Granger causality in the frequency domain: derivation and applications

Detalhes bibliográficos
Autor(a) principal: Lima,Vinicius
Data de Publicação: 2020
Outros Autores: Dellajustina,Fernanda Jaiara, Shimoura,Renan O., Girardi-Schappo,Mauricio, Kamiji,Nilton L., Pena,Rodrigo F. O., Roque,Antonio C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ensino de Física (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100479
Resumo: Abstract Physicists are starting to work in areas where noisy signal analysis is required. In these fields, such as Economics, Neuroscience, and Physics, the notion of causality should be interpreted as a statistical measure. We introduce to the lay reader the Granger causality between two time series and illustrate ways of calculating it: a signal X “Granger-causes” a signal Y if the observation of the past of X increases the predictability of the future of Y when compared to the same prediction done with the past of Y alone. In other words, for Granger causality between two quantities it suffices that information extracted from the past of one of them improves the forecast of the future of the other, even in the absence of any physical mechanism of interaction. We present derivations of the Granger causality measure in the time and frequency domains and give numerical examples using a non-parametric estimation method in the frequency domain. Parametric methods are addressed in the Appendix. We discuss the limitations and applications of this method and other alternatives to measure causality.
id SBF-1_65330c7f97705d1a62ea15770631fa2f
oai_identifier_str oai:scielo:S1806-11172020000100479
network_acronym_str SBF-1
network_name_str Revista Brasileira de Ensino de Física (Online)
repository_id_str
spelling Granger causality in the frequency domain: derivation and applicationsGranger causalityautoregressive processconditional Granger causalitynon-parametric estimationAbstract Physicists are starting to work in areas where noisy signal analysis is required. In these fields, such as Economics, Neuroscience, and Physics, the notion of causality should be interpreted as a statistical measure. We introduce to the lay reader the Granger causality between two time series and illustrate ways of calculating it: a signal X “Granger-causes” a signal Y if the observation of the past of X increases the predictability of the future of Y when compared to the same prediction done with the past of Y alone. In other words, for Granger causality between two quantities it suffices that information extracted from the past of one of them improves the forecast of the future of the other, even in the absence of any physical mechanism of interaction. We present derivations of the Granger causality measure in the time and frequency domains and give numerical examples using a non-parametric estimation method in the frequency domain. Parametric methods are addressed in the Appendix. We discuss the limitations and applications of this method and other alternatives to measure causality.Sociedade Brasileira de Física2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100479Revista Brasileira de Ensino de Física v.42 2020reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2020-0007info:eu-repo/semantics/openAccessLima,ViniciusDellajustina,Fernanda JaiaraShimoura,Renan O.Girardi-Schappo,MauricioKamiji,Nilton L.Pena,Rodrigo F. O.Roque,Antonio C.eng2020-09-15T00:00:00Zoai:scielo:S1806-11172020000100479Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2020-09-15T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Granger causality in the frequency domain: derivation and applications
title Granger causality in the frequency domain: derivation and applications
spellingShingle Granger causality in the frequency domain: derivation and applications
Lima,Vinicius
Granger causality
autoregressive process
conditional Granger causality
non-parametric estimation
title_short Granger causality in the frequency domain: derivation and applications
title_full Granger causality in the frequency domain: derivation and applications
title_fullStr Granger causality in the frequency domain: derivation and applications
title_full_unstemmed Granger causality in the frequency domain: derivation and applications
title_sort Granger causality in the frequency domain: derivation and applications
author Lima,Vinicius
author_facet Lima,Vinicius
Dellajustina,Fernanda Jaiara
Shimoura,Renan O.
Girardi-Schappo,Mauricio
Kamiji,Nilton L.
Pena,Rodrigo F. O.
Roque,Antonio C.
author_role author
author2 Dellajustina,Fernanda Jaiara
Shimoura,Renan O.
Girardi-Schappo,Mauricio
Kamiji,Nilton L.
Pena,Rodrigo F. O.
Roque,Antonio C.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Lima,Vinicius
Dellajustina,Fernanda Jaiara
Shimoura,Renan O.
Girardi-Schappo,Mauricio
Kamiji,Nilton L.
Pena,Rodrigo F. O.
Roque,Antonio C.
dc.subject.por.fl_str_mv Granger causality
autoregressive process
conditional Granger causality
non-parametric estimation
topic Granger causality
autoregressive process
conditional Granger causality
non-parametric estimation
description Abstract Physicists are starting to work in areas where noisy signal analysis is required. In these fields, such as Economics, Neuroscience, and Physics, the notion of causality should be interpreted as a statistical measure. We introduce to the lay reader the Granger causality between two time series and illustrate ways of calculating it: a signal X “Granger-causes” a signal Y if the observation of the past of X increases the predictability of the future of Y when compared to the same prediction done with the past of Y alone. In other words, for Granger causality between two quantities it suffices that information extracted from the past of one of them improves the forecast of the future of the other, even in the absence of any physical mechanism of interaction. We present derivations of the Granger causality measure in the time and frequency domains and give numerical examples using a non-parametric estimation method in the frequency domain. Parametric methods are addressed in the Appendix. We discuss the limitations and applications of this method and other alternatives to measure causality.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100479
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172020000100479
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1806-9126-rbef-2020-0007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Revista Brasileira de Ensino de Física v.42 2020
reponame:Revista Brasileira de Ensino de Física (Online)
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Revista Brasileira de Ensino de Física (Online)
collection Revista Brasileira de Ensino de Física (Online)
repository.name.fl_str_mv Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv ||marcio@sbfisica.org.br
_version_ 1752122424780914688