Deterministic Chaos Theory: Basic Concepts
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100409 |
Resumo: | This article was written to students of mathematics, physics and engineering. In general, the word chaos may refer to any state of confusion or disorder and it may also refer to mythology or philosophy. In science and mathematics it is understood as irregular behavior sensitive to initial conditions. In this article we analyze the deterministic chaos theory, a branch of mathematics and physics that deals with dynamical systems (nonlinear differential equations or mappings) with very peculiar properties. Fundamental concepts of the deterministic chaos theory are briefly analyzed and some illustrative examples of conservative and dissipative chaotic motions are introduced. Complementarily, we studied in details the chaotic motion of some dynamical systems described by differential equations and mappings. Relations between chaotic, stochastic and turbulent phenomena are also commented. |
id |
SBF-1_6ab934b7a1e4b937338909c59f997e5c |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172017000100409 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Deterministic Chaos Theory: Basic Conceptschaos theorydifferential equationsPoincaré sectionsmappingLyapunov exponentThis article was written to students of mathematics, physics and engineering. In general, the word chaos may refer to any state of confusion or disorder and it may also refer to mythology or philosophy. In science and mathematics it is understood as irregular behavior sensitive to initial conditions. In this article we analyze the deterministic chaos theory, a branch of mathematics and physics that deals with dynamical systems (nonlinear differential equations or mappings) with very peculiar properties. Fundamental concepts of the deterministic chaos theory are briefly analyzed and some illustrative examples of conservative and dissipative chaotic motions are introduced. Complementarily, we studied in details the chaotic motion of some dynamical systems described by differential equations and mappings. Relations between chaotic, stochastic and turbulent phenomena are also commented.Sociedade Brasileira de Física2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100409Revista Brasileira de Ensino de Física v.39 n.1 2017reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2016-0185info:eu-repo/semantics/openAccessCattani,MauroCaldas,Iberê LuizSouza,Silvio Luiz deIarosz,Kelly Cristianeeng2017-09-29T00:00:00Zoai:scielo:S1806-11172017000100409Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2017-09-29T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Deterministic Chaos Theory: Basic Concepts |
title |
Deterministic Chaos Theory: Basic Concepts |
spellingShingle |
Deterministic Chaos Theory: Basic Concepts Cattani,Mauro chaos theory differential equations Poincaré sections mapping Lyapunov exponent |
title_short |
Deterministic Chaos Theory: Basic Concepts |
title_full |
Deterministic Chaos Theory: Basic Concepts |
title_fullStr |
Deterministic Chaos Theory: Basic Concepts |
title_full_unstemmed |
Deterministic Chaos Theory: Basic Concepts |
title_sort |
Deterministic Chaos Theory: Basic Concepts |
author |
Cattani,Mauro |
author_facet |
Cattani,Mauro Caldas,Iberê Luiz Souza,Silvio Luiz de Iarosz,Kelly Cristiane |
author_role |
author |
author2 |
Caldas,Iberê Luiz Souza,Silvio Luiz de Iarosz,Kelly Cristiane |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Cattani,Mauro Caldas,Iberê Luiz Souza,Silvio Luiz de Iarosz,Kelly Cristiane |
dc.subject.por.fl_str_mv |
chaos theory differential equations Poincaré sections mapping Lyapunov exponent |
topic |
chaos theory differential equations Poincaré sections mapping Lyapunov exponent |
description |
This article was written to students of mathematics, physics and engineering. In general, the word chaos may refer to any state of confusion or disorder and it may also refer to mythology or philosophy. In science and mathematics it is understood as irregular behavior sensitive to initial conditions. In this article we analyze the deterministic chaos theory, a branch of mathematics and physics that deals with dynamical systems (nonlinear differential equations or mappings) with very peculiar properties. Fundamental concepts of the deterministic chaos theory are briefly analyzed and some illustrative examples of conservative and dissipative chaotic motions are introduced. Complementarily, we studied in details the chaotic motion of some dynamical systems described by differential equations and mappings. Relations between chaotic, stochastic and turbulent phenomena are also commented. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100409 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100409 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2016-0185 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.39 n.1 2017 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122423181836288 |