Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000400701 |
Resumo: | Leonhard Euler derived equations of motion for both (in modern terminology) point mass mechanics and analytic mechanics. In order to derive the equations, some dynamic premise has to be introduced; this is the “principle of mechanics”. It stems from the recognition that infinitesimal motions are uniformly accelerated. Then, using Galileo Galilei's theorem on the fall, mathematical relations among differentials acquire physical meaning, and become the “principle of mechanics”. |
id |
SBF-1_8c699ebb6ff215957fd9e2e424d0f7cb |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172017000400701 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)physical meaning of the lagrangiandifferential equations of motionLeonhard EulerLeonhard Euler derived equations of motion for both (in modern terminology) point mass mechanics and analytic mechanics. In order to derive the equations, some dynamic premise has to be introduced; this is the “principle of mechanics”. It stems from the recognition that infinitesimal motions are uniformly accelerated. Then, using Galileo Galilei's theorem on the fall, mathematical relations among differentials acquire physical meaning, and become the “principle of mechanics”.Sociedade Brasileira de Física2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000400701Revista Brasileira de Ensino de Física v.39 n.4 2017reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2017-0057info:eu-repo/semantics/openAccessDias,Penha Maria Cardozoeng2017-09-29T00:00:00Zoai:scielo:S1806-11172017000400701Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2017-09-29T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion) |
title |
Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion) |
spellingShingle |
Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion) Dias,Penha Maria Cardozo physical meaning of the lagrangian differential equations of motion Leonhard Euler |
title_short |
Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion) |
title_full |
Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion) |
title_fullStr |
Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion) |
title_full_unstemmed |
Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion) |
title_sort |
Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion) |
author |
Dias,Penha Maria Cardozo |
author_facet |
Dias,Penha Maria Cardozo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Dias,Penha Maria Cardozo |
dc.subject.por.fl_str_mv |
physical meaning of the lagrangian differential equations of motion Leonhard Euler |
topic |
physical meaning of the lagrangian differential equations of motion Leonhard Euler |
description |
Leonhard Euler derived equations of motion for both (in modern terminology) point mass mechanics and analytic mechanics. In order to derive the equations, some dynamic premise has to be introduced; this is the “principle of mechanics”. It stems from the recognition that infinitesimal motions are uniformly accelerated. Then, using Galileo Galilei's theorem on the fall, mathematical relations among differentials acquire physical meaning, and become the “principle of mechanics”. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000400701 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000400701 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2017-0057 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.39 n.4 2017 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122423302422528 |