Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)

Detalhes bibliográficos
Autor(a) principal: Dias,Penha Maria Cardozo
Data de Publicação: 2017
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Ensino de Física (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000400701
Resumo: Leonhard Euler derived equations of motion for both (in modern terminology) point mass mechanics and analytic mechanics. In order to derive the equations, some dynamic premise has to be introduced; this is the “principle of mechanics”. It stems from the recognition that infinitesimal motions are uniformly accelerated. Then, using Galileo Galilei's theorem on the fall, mathematical relations among differentials acquire physical meaning, and become the “principle of mechanics”.
id SBF-1_8c699ebb6ff215957fd9e2e424d0f7cb
oai_identifier_str oai:scielo:S1806-11172017000400701
network_acronym_str SBF-1
network_name_str Revista Brasileira de Ensino de Física (Online)
repository_id_str
spelling Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)physical meaning of the lagrangiandifferential equations of motionLeonhard EulerLeonhard Euler derived equations of motion for both (in modern terminology) point mass mechanics and analytic mechanics. In order to derive the equations, some dynamic premise has to be introduced; this is the “principle of mechanics”. It stems from the recognition that infinitesimal motions are uniformly accelerated. Then, using Galileo Galilei's theorem on the fall, mathematical relations among differentials acquire physical meaning, and become the “principle of mechanics”.Sociedade Brasileira de Física2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000400701Revista Brasileira de Ensino de Física v.39 n.4 2017reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2017-0057info:eu-repo/semantics/openAccessDias,Penha Maria Cardozoeng2017-09-29T00:00:00Zoai:scielo:S1806-11172017000400701Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2017-09-29T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)
title Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)
spellingShingle Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)
Dias,Penha Maria Cardozo
physical meaning of the lagrangian
differential equations of motion
Leonhard Euler
title_short Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)
title_full Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)
title_fullStr Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)
title_full_unstemmed Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)
title_sort Leonhard Euler's “principle of mechanics” (an essay on the foundations of the equations of motion)
author Dias,Penha Maria Cardozo
author_facet Dias,Penha Maria Cardozo
author_role author
dc.contributor.author.fl_str_mv Dias,Penha Maria Cardozo
dc.subject.por.fl_str_mv physical meaning of the lagrangian
differential equations of motion
Leonhard Euler
topic physical meaning of the lagrangian
differential equations of motion
Leonhard Euler
description Leonhard Euler derived equations of motion for both (in modern terminology) point mass mechanics and analytic mechanics. In order to derive the equations, some dynamic premise has to be introduced; this is the “principle of mechanics”. It stems from the recognition that infinitesimal motions are uniformly accelerated. Then, using Galileo Galilei's theorem on the fall, mathematical relations among differentials acquire physical meaning, and become the “principle of mechanics”.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000400701
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000400701
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1806-9126-rbef-2017-0057
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Revista Brasileira de Ensino de Física v.39 n.4 2017
reponame:Revista Brasileira de Ensino de Física (Online)
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Revista Brasileira de Ensino de Física (Online)
collection Revista Brasileira de Ensino de Física (Online)
repository.name.fl_str_mv Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv ||marcio@sbfisica.org.br
_version_ 1752122423302422528