Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000400005 |
Resumo: | The simple harmonic motion of a spring-mass system generally exhibits a behavior strongly influenced by the geometric parameters of the spring. In this paper, we study the oscillatory behavior of a spring-mass system, considering the influence of varying the average spring diameter Φ on the elastic constant k, the angular frequency ω, the damping factor γ, and the dynamics of the oscillations. It was found that the elastic constant k is proportional to Φ-3, while the natural frequency ω0 is proportional to Φ- 3 / 2, and γ decreases as Φ increases. We also show the differences obtained in the value of the angular frequency ω when the springs are considered as ideal (massless), taking into account the effective mass of the spring, and considering the influence of the damping of the oscillations. This experiment provides students with the possibility of understanding the differences between theoretical models that include well-known corrections to determine the frequency of oscillations of a spring-mass system. |
id |
SBF-1_b6bf996dddde0dfdfd4b68c50d0d84da |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172013000400005 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameterspring-mass systemHooke's lawelastic constantsimple harmonic motiondampingThe simple harmonic motion of a spring-mass system generally exhibits a behavior strongly influenced by the geometric parameters of the spring. In this paper, we study the oscillatory behavior of a spring-mass system, considering the influence of varying the average spring diameter Φ on the elastic constant k, the angular frequency ω, the damping factor γ, and the dynamics of the oscillations. It was found that the elastic constant k is proportional to Φ-3, while the natural frequency ω0 is proportional to Φ- 3 / 2, and γ decreases as Φ increases. We also show the differences obtained in the value of the angular frequency ω when the springs are considered as ideal (massless), taking into account the effective mass of the spring, and considering the influence of the damping of the oscillations. This experiment provides students with the possibility of understanding the differences between theoretical models that include well-known corrections to determine the frequency of oscillations of a spring-mass system.Sociedade Brasileira de Física2013-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000400005Revista Brasileira de Ensino de Física v.35 n.4 2013reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S1806-11172013000400005info:eu-repo/semantics/openAccessTriana,C.A.Fajardo,F.eng2015-11-05T00:00:00Zoai:scielo:S1806-11172013000400005Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2015-11-05T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter |
title |
Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter |
spellingShingle |
Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter Triana,C.A. spring-mass system Hooke's law elastic constant simple harmonic motion damping |
title_short |
Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter |
title_full |
Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter |
title_fullStr |
Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter |
title_full_unstemmed |
Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter |
title_sort |
Experimental study of simple harmonic motion of a spring-mass system as a function of spring diameter |
author |
Triana,C.A. |
author_facet |
Triana,C.A. Fajardo,F. |
author_role |
author |
author2 |
Fajardo,F. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Triana,C.A. Fajardo,F. |
dc.subject.por.fl_str_mv |
spring-mass system Hooke's law elastic constant simple harmonic motion damping |
topic |
spring-mass system Hooke's law elastic constant simple harmonic motion damping |
description |
The simple harmonic motion of a spring-mass system generally exhibits a behavior strongly influenced by the geometric parameters of the spring. In this paper, we study the oscillatory behavior of a spring-mass system, considering the influence of varying the average spring diameter Φ on the elastic constant k, the angular frequency ω, the damping factor γ, and the dynamics of the oscillations. It was found that the elastic constant k is proportional to Φ-3, while the natural frequency ω0 is proportional to Φ- 3 / 2, and γ decreases as Φ increases. We also show the differences obtained in the value of the angular frequency ω when the springs are considered as ideal (massless), taking into account the effective mass of the spring, and considering the influence of the damping of the oscillations. This experiment provides students with the possibility of understanding the differences between theoretical models that include well-known corrections to determine the frequency of oscillations of a spring-mass system. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000400005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172013000400005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1806-11172013000400005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.35 n.4 2013 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122422105997312 |