New analytical results on the study of aircraft performance with velocity dependent forces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Ensino de Física (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100415 |
Resumo: | Most aeronautical accidents happen during takeoff and landing. The main objective when studying those phases of the flight mission is to answer a seemingly simple questions: can the airplane safely takeoff and land on the stipulated runway dimensions with the intended weight? The main objective of the present paper is to obtain new analytical answer to those questions, for fixed wing airplanes. To our present knowledge such a solution, with the degree of generalisation proposed here, is new in the literature. Regarding previous studies, first a new power unit traction equation is employed to explicitly consider the influence of air density, angular velocity and diameter of the propeller. Then a new method for calculating the maximum weight is proposed. Next, the use of breaks is modeled and analysed and an equation to calculate the static gliding wind velocity is proposed. Finally, a toolbox created to perform the calculations is described. A thorough analysis of the influence of the airplane design parameters on the behavior of the motion equations is made, with special attention to the use of brakes. Numerical results are successfully compared with experimental data from two models of a commercial airplane, the Cessna 172 Skyhawk models N and S, and four UAV prototypes. The methodology employed uses simple laws of classical mechanics allied to basic calculus and is easy to understand by first year students of physics, engineering or mathematics. |
id |
SBF-1_d252dc03213a19a9061aeef1a6d05940 |
---|---|
oai_identifier_str |
oai:scielo:S1806-11172022000100415 |
network_acronym_str |
SBF-1 |
network_name_str |
Revista Brasileira de Ensino de Física (Online) |
repository_id_str |
|
spelling |
New analytical results on the study of aircraft performance with velocity dependent forcesFlight mechanicsaircraft performancetakeoff and landing distancesmaximum weightMost aeronautical accidents happen during takeoff and landing. The main objective when studying those phases of the flight mission is to answer a seemingly simple questions: can the airplane safely takeoff and land on the stipulated runway dimensions with the intended weight? The main objective of the present paper is to obtain new analytical answer to those questions, for fixed wing airplanes. To our present knowledge such a solution, with the degree of generalisation proposed here, is new in the literature. Regarding previous studies, first a new power unit traction equation is employed to explicitly consider the influence of air density, angular velocity and diameter of the propeller. Then a new method for calculating the maximum weight is proposed. Next, the use of breaks is modeled and analysed and an equation to calculate the static gliding wind velocity is proposed. Finally, a toolbox created to perform the calculations is described. A thorough analysis of the influence of the airplane design parameters on the behavior of the motion equations is made, with special attention to the use of brakes. Numerical results are successfully compared with experimental data from two models of a commercial airplane, the Cessna 172 Skyhawk models N and S, and four UAV prototypes. The methodology employed uses simple laws of classical mechanics allied to basic calculus and is easy to understand by first year students of physics, engineering or mathematics.Sociedade Brasileira de Física2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100415Revista Brasileira de Ensino de Física v.44 2022reponame:Revista Brasileira de Ensino de Física (Online)instname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/1806-9126-rbef-2021-0410info:eu-repo/semantics/openAccessPellegrini,Cláudio C.Moreira,Erika D.O.Rodrigues,Mateus S.eng2022-01-20T00:00:00Zoai:scielo:S1806-11172022000100415Revistahttp://www.sbfisica.org.br/rbef/https://old.scielo.br/oai/scielo-oai.php||marcio@sbfisica.org.br1806-91261806-1117opendoar:2022-01-20T00:00Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
New analytical results on the study of aircraft performance with velocity dependent forces |
title |
New analytical results on the study of aircraft performance with velocity dependent forces |
spellingShingle |
New analytical results on the study of aircraft performance with velocity dependent forces Pellegrini,Cláudio C. Flight mechanics aircraft performance takeoff and landing distances maximum weight |
title_short |
New analytical results on the study of aircraft performance with velocity dependent forces |
title_full |
New analytical results on the study of aircraft performance with velocity dependent forces |
title_fullStr |
New analytical results on the study of aircraft performance with velocity dependent forces |
title_full_unstemmed |
New analytical results on the study of aircraft performance with velocity dependent forces |
title_sort |
New analytical results on the study of aircraft performance with velocity dependent forces |
author |
Pellegrini,Cláudio C. |
author_facet |
Pellegrini,Cláudio C. Moreira,Erika D.O. Rodrigues,Mateus S. |
author_role |
author |
author2 |
Moreira,Erika D.O. Rodrigues,Mateus S. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pellegrini,Cláudio C. Moreira,Erika D.O. Rodrigues,Mateus S. |
dc.subject.por.fl_str_mv |
Flight mechanics aircraft performance takeoff and landing distances maximum weight |
topic |
Flight mechanics aircraft performance takeoff and landing distances maximum weight |
description |
Most aeronautical accidents happen during takeoff and landing. The main objective when studying those phases of the flight mission is to answer a seemingly simple questions: can the airplane safely takeoff and land on the stipulated runway dimensions with the intended weight? The main objective of the present paper is to obtain new analytical answer to those questions, for fixed wing airplanes. To our present knowledge such a solution, with the degree of generalisation proposed here, is new in the literature. Regarding previous studies, first a new power unit traction equation is employed to explicitly consider the influence of air density, angular velocity and diameter of the propeller. Then a new method for calculating the maximum weight is proposed. Next, the use of breaks is modeled and analysed and an equation to calculate the static gliding wind velocity is proposed. Finally, a toolbox created to perform the calculations is described. A thorough analysis of the influence of the airplane design parameters on the behavior of the motion equations is made, with special attention to the use of brakes. Numerical results are successfully compared with experimental data from two models of a commercial airplane, the Cessna 172 Skyhawk models N and S, and four UAV prototypes. The methodology employed uses simple laws of classical mechanics allied to basic calculus and is easy to understand by first year students of physics, engineering or mathematics. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100415 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172022000100415 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1806-9126-rbef-2021-0410 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Revista Brasileira de Ensino de Física v.44 2022 reponame:Revista Brasileira de Ensino de Física (Online) instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Revista Brasileira de Ensino de Física (Online) |
collection |
Revista Brasileira de Ensino de Física (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Ensino de Física (Online) - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
||marcio@sbfisica.org.br |
_version_ |
1752122425929105408 |