Hamilton-Jacobi approach for power-law potentials

Detalhes bibliográficos
Autor(a) principal: Santos,R. C.
Data de Publicação: 2006
Outros Autores: Santos,J., Lima,J. A. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700024
Resumo: The classical and relativistic Hamilton-Jacobi approach is applied to the one-dimensional homogeneous potential, V(q) = alphaq n, where alpha and n are continuously varying parameters. In the non-relativistic case, the exact analytical solution is determined in terms of alpha, n and the total energy E. It is also shown that the non-linear equation of motion can be linearized by constructing a hypergeometric differential equation for the inverse problem t(q). A variable transformation reducing the general problem to that one of a particle subjected to a linear force is also established. For any value of n, it leads to a simple harmonic oscillator if E > 0, an "anti-oscillator" if E < 0, or a free particle if E = 0. However, such a reduction is not possible in the relativistic case. For a bounded relativistic motion, the first order correction to the period is determined for any value of n. For n >> 1, it is found that the correction is just twice that one deduced for the simple harmonic oscillator (n = 2), and does not depend on the specific value of n.
id SBF-2_0296dbd6c8bf5bc0d2ee96737f4967a6
oai_identifier_str oai:scielo:S0103-97332006000700024
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Hamilton-Jacobi approach for power-law potentialsHamilton-Jacobi equationPower-law potentialsThe classical and relativistic Hamilton-Jacobi approach is applied to the one-dimensional homogeneous potential, V(q) = alphaq n, where alpha and n are continuously varying parameters. In the non-relativistic case, the exact analytical solution is determined in terms of alpha, n and the total energy E. It is also shown that the non-linear equation of motion can be linearized by constructing a hypergeometric differential equation for the inverse problem t(q). A variable transformation reducing the general problem to that one of a particle subjected to a linear force is also established. For any value of n, it leads to a simple harmonic oscillator if E > 0, an "anti-oscillator" if E < 0, or a free particle if E = 0. However, such a reduction is not possible in the relativistic case. For a bounded relativistic motion, the first order correction to the period is determined for any value of n. For n >> 1, it is found that the correction is just twice that one deduced for the simple harmonic oscillator (n = 2), and does not depend on the specific value of n.Sociedade Brasileira de Física2006-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700024Brazilian Journal of Physics v.36 n.4a 2006reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332006000700024info:eu-repo/semantics/openAccessSantos,R. C.Santos,J.Lima,J. A. S.eng2007-06-21T00:00:00Zoai:scielo:S0103-97332006000700024Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2007-06-21T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Hamilton-Jacobi approach for power-law potentials
title Hamilton-Jacobi approach for power-law potentials
spellingShingle Hamilton-Jacobi approach for power-law potentials
Santos,R. C.
Hamilton-Jacobi equation
Power-law potentials
title_short Hamilton-Jacobi approach for power-law potentials
title_full Hamilton-Jacobi approach for power-law potentials
title_fullStr Hamilton-Jacobi approach for power-law potentials
title_full_unstemmed Hamilton-Jacobi approach for power-law potentials
title_sort Hamilton-Jacobi approach for power-law potentials
author Santos,R. C.
author_facet Santos,R. C.
Santos,J.
Lima,J. A. S.
author_role author
author2 Santos,J.
Lima,J. A. S.
author2_role author
author
dc.contributor.author.fl_str_mv Santos,R. C.
Santos,J.
Lima,J. A. S.
dc.subject.por.fl_str_mv Hamilton-Jacobi equation
Power-law potentials
topic Hamilton-Jacobi equation
Power-law potentials
description The classical and relativistic Hamilton-Jacobi approach is applied to the one-dimensional homogeneous potential, V(q) = alphaq n, where alpha and n are continuously varying parameters. In the non-relativistic case, the exact analytical solution is determined in terms of alpha, n and the total energy E. It is also shown that the non-linear equation of motion can be linearized by constructing a hypergeometric differential equation for the inverse problem t(q). A variable transformation reducing the general problem to that one of a particle subjected to a linear force is also established. For any value of n, it leads to a simple harmonic oscillator if E > 0, an "anti-oscillator" if E < 0, or a free particle if E = 0. However, such a reduction is not possible in the relativistic case. For a bounded relativistic motion, the first order correction to the period is determined for any value of n. For n >> 1, it is found that the correction is just twice that one deduced for the simple harmonic oscillator (n = 2), and does not depend on the specific value of n.
publishDate 2006
dc.date.none.fl_str_mv 2006-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700024
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332006000700024
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.36 n.4a 2006
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734863437529088