Hamilton-Jacobi approach for power-law potentials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700024 |
Resumo: | The classical and relativistic Hamilton-Jacobi approach is applied to the one-dimensional homogeneous potential, V(q) = alphaq n, where alpha and n are continuously varying parameters. In the non-relativistic case, the exact analytical solution is determined in terms of alpha, n and the total energy E. It is also shown that the non-linear equation of motion can be linearized by constructing a hypergeometric differential equation for the inverse problem t(q). A variable transformation reducing the general problem to that one of a particle subjected to a linear force is also established. For any value of n, it leads to a simple harmonic oscillator if E > 0, an "anti-oscillator" if E < 0, or a free particle if E = 0. However, such a reduction is not possible in the relativistic case. For a bounded relativistic motion, the first order correction to the period is determined for any value of n. For n >> 1, it is found that the correction is just twice that one deduced for the simple harmonic oscillator (n = 2), and does not depend on the specific value of n. |
id |
SBF-2_0296dbd6c8bf5bc0d2ee96737f4967a6 |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332006000700024 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
Hamilton-Jacobi approach for power-law potentialsHamilton-Jacobi equationPower-law potentialsThe classical and relativistic Hamilton-Jacobi approach is applied to the one-dimensional homogeneous potential, V(q) = alphaq n, where alpha and n are continuously varying parameters. In the non-relativistic case, the exact analytical solution is determined in terms of alpha, n and the total energy E. It is also shown that the non-linear equation of motion can be linearized by constructing a hypergeometric differential equation for the inverse problem t(q). A variable transformation reducing the general problem to that one of a particle subjected to a linear force is also established. For any value of n, it leads to a simple harmonic oscillator if E > 0, an "anti-oscillator" if E < 0, or a free particle if E = 0. However, such a reduction is not possible in the relativistic case. For a bounded relativistic motion, the first order correction to the period is determined for any value of n. For n >> 1, it is found that the correction is just twice that one deduced for the simple harmonic oscillator (n = 2), and does not depend on the specific value of n.Sociedade Brasileira de Física2006-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700024Brazilian Journal of Physics v.36 n.4a 2006reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332006000700024info:eu-repo/semantics/openAccessSantos,R. C.Santos,J.Lima,J. A. S.eng2007-06-21T00:00:00Zoai:scielo:S0103-97332006000700024Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2007-06-21T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Hamilton-Jacobi approach for power-law potentials |
title |
Hamilton-Jacobi approach for power-law potentials |
spellingShingle |
Hamilton-Jacobi approach for power-law potentials Santos,R. C. Hamilton-Jacobi equation Power-law potentials |
title_short |
Hamilton-Jacobi approach for power-law potentials |
title_full |
Hamilton-Jacobi approach for power-law potentials |
title_fullStr |
Hamilton-Jacobi approach for power-law potentials |
title_full_unstemmed |
Hamilton-Jacobi approach for power-law potentials |
title_sort |
Hamilton-Jacobi approach for power-law potentials |
author |
Santos,R. C. |
author_facet |
Santos,R. C. Santos,J. Lima,J. A. S. |
author_role |
author |
author2 |
Santos,J. Lima,J. A. S. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Santos,R. C. Santos,J. Lima,J. A. S. |
dc.subject.por.fl_str_mv |
Hamilton-Jacobi equation Power-law potentials |
topic |
Hamilton-Jacobi equation Power-law potentials |
description |
The classical and relativistic Hamilton-Jacobi approach is applied to the one-dimensional homogeneous potential, V(q) = alphaq n, where alpha and n are continuously varying parameters. In the non-relativistic case, the exact analytical solution is determined in terms of alpha, n and the total energy E. It is also shown that the non-linear equation of motion can be linearized by constructing a hypergeometric differential equation for the inverse problem t(q). A variable transformation reducing the general problem to that one of a particle subjected to a linear force is also established. For any value of n, it leads to a simple harmonic oscillator if E > 0, an "anti-oscillator" if E < 0, or a free particle if E = 0. However, such a reduction is not possible in the relativistic case. For a bounded relativistic motion, the first order correction to the period is determined for any value of n. For n >> 1, it is found that the correction is just twice that one deduced for the simple harmonic oscillator (n = 2), and does not depend on the specific value of n. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700024 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332006000700024 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332006000700024 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.36 n.4a 2006 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734863437529088 |