Non-universal interspecific allometric scaling of metabolism
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000600014 |
Resumo: | We extend a previously theory for the interspecific allometric scaling developed in a d+1-dimensional space of metabolic states. The time, which is characteristic of all biological processes, is included as an extra dimension to d biological lengths. The different metabolic rates, such as basal (BMR) and maximum (MMR), are described by supposing that the biological lengths and time are related by different transport processes of energy and mass. We consider that the metabolic rates of animals are controlled by three main transport processes: convection, diffusion and anomalous diffusion. Different transport mechanisms are related to different metabolic states, with its own values for allometric exponents. In d = 3, we obtain that the exponent b of BMR is b = 0.71, and that the aerobic sustained MMR upper value of the exponent is b = 0.86 (best empirical values for mammals: b = 0.69(2) and b = 0.87(3)). The 3/4-law appears as an upper limit of BMR. The MMR scaling in different conditions, other exponents related to BMR and MMR, and the metabolism of unicellular organisms are also discussed. |
id |
SBF-2_19b07cdd3346ac38eb388c564c57ac7a |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332009000600014 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
Non-universal interspecific allometric scaling of metabolismAllometryInterspecific Biological ScalingMetabolismBasal Metabolic RateMaximum Metabolic RateMammalsBirdsWe extend a previously theory for the interspecific allometric scaling developed in a d+1-dimensional space of metabolic states. The time, which is characteristic of all biological processes, is included as an extra dimension to d biological lengths. The different metabolic rates, such as basal (BMR) and maximum (MMR), are described by supposing that the biological lengths and time are related by different transport processes of energy and mass. We consider that the metabolic rates of animals are controlled by three main transport processes: convection, diffusion and anomalous diffusion. Different transport mechanisms are related to different metabolic states, with its own values for allometric exponents. In d = 3, we obtain that the exponent b of BMR is b = 0.71, and that the aerobic sustained MMR upper value of the exponent is b = 0.86 (best empirical values for mammals: b = 0.69(2) and b = 0.87(3)). The 3/4-law appears as an upper limit of BMR. The MMR scaling in different conditions, other exponents related to BMR and MMR, and the metabolism of unicellular organisms are also discussed.Sociedade Brasileira de Física2009-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000600014Brazilian Journal of Physics v.39 n.4 2009reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332009000600014info:eu-repo/semantics/openAccessSilva,Jafferson K. L. daBarbosa,Lauro A.eng2010-02-11T00:00:00Zoai:scielo:S0103-97332009000600014Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2010-02-11T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Non-universal interspecific allometric scaling of metabolism |
title |
Non-universal interspecific allometric scaling of metabolism |
spellingShingle |
Non-universal interspecific allometric scaling of metabolism Silva,Jafferson K. L. da Allometry Interspecific Biological Scaling Metabolism Basal Metabolic Rate Maximum Metabolic Rate Mammals Birds |
title_short |
Non-universal interspecific allometric scaling of metabolism |
title_full |
Non-universal interspecific allometric scaling of metabolism |
title_fullStr |
Non-universal interspecific allometric scaling of metabolism |
title_full_unstemmed |
Non-universal interspecific allometric scaling of metabolism |
title_sort |
Non-universal interspecific allometric scaling of metabolism |
author |
Silva,Jafferson K. L. da |
author_facet |
Silva,Jafferson K. L. da Barbosa,Lauro A. |
author_role |
author |
author2 |
Barbosa,Lauro A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Silva,Jafferson K. L. da Barbosa,Lauro A. |
dc.subject.por.fl_str_mv |
Allometry Interspecific Biological Scaling Metabolism Basal Metabolic Rate Maximum Metabolic Rate Mammals Birds |
topic |
Allometry Interspecific Biological Scaling Metabolism Basal Metabolic Rate Maximum Metabolic Rate Mammals Birds |
description |
We extend a previously theory for the interspecific allometric scaling developed in a d+1-dimensional space of metabolic states. The time, which is characteristic of all biological processes, is included as an extra dimension to d biological lengths. The different metabolic rates, such as basal (BMR) and maximum (MMR), are described by supposing that the biological lengths and time are related by different transport processes of energy and mass. We consider that the metabolic rates of animals are controlled by three main transport processes: convection, diffusion and anomalous diffusion. Different transport mechanisms are related to different metabolic states, with its own values for allometric exponents. In d = 3, we obtain that the exponent b of BMR is b = 0.71, and that the aerobic sustained MMR upper value of the exponent is b = 0.86 (best empirical values for mammals: b = 0.69(2) and b = 0.87(3)). The 3/4-law appears as an upper limit of BMR. The MMR scaling in different conditions, other exponents related to BMR and MMR, and the metabolism of unicellular organisms are also discussed. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000600014 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000600014 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332009000600014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.39 n.4 2009 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734865244225536 |