Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400024 |
Resumo: | In the framework of the statistical mechanics based on the Sharma-Taneja-Mittal entropy we derive a family of nonlinear Fokker-Planck equations characterized by the associated non-increasing Lyapunov functional. This class of equations describes kinetic processes in anomalous mediums where both super-diffusive and subdiffusive mechanisms arise contemporarily and competitively. We classify the Lie symmetries and derive the corresponding group-invariant solutions for the physically meaningful Uhlenbeck-Ornstein process. For the purely diffusive process we show that any localized state asymptotically approaches a bell shape well fitted by a generalized Gaussian which is, in general, a quasi-self-similar solution for this class of purely diffusive equations. |
id |
SBF-2_8ede355a3eddbfd4fcc89a504629afb6 |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332009000400024 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropyNonlinear Fokker-Planck equationSharma-Taneja-Mittal entropyLie symmetriesGroup invariant solutionsIn the framework of the statistical mechanics based on the Sharma-Taneja-Mittal entropy we derive a family of nonlinear Fokker-Planck equations characterized by the associated non-increasing Lyapunov functional. This class of equations describes kinetic processes in anomalous mediums where both super-diffusive and subdiffusive mechanisms arise contemporarily and competitively. We classify the Lie symmetries and derive the corresponding group-invariant solutions for the physically meaningful Uhlenbeck-Ornstein process. For the purely diffusive process we show that any localized state asymptotically approaches a bell shape well fitted by a generalized Gaussian which is, in general, a quasi-self-similar solution for this class of purely diffusive equations.Sociedade Brasileira de Física2009-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400024Brazilian Journal of Physics v.39 n.2a 2009reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332009000400024info:eu-repo/semantics/openAccessScarfone,A. M.Wada,T.eng2009-09-10T00:00:00Zoai:scielo:S0103-97332009000400024Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2009-09-10T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy |
title |
Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy |
spellingShingle |
Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy Scarfone,A. M. Nonlinear Fokker-Planck equation Sharma-Taneja-Mittal entropy Lie symmetries Group invariant solutions |
title_short |
Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy |
title_full |
Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy |
title_fullStr |
Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy |
title_full_unstemmed |
Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy |
title_sort |
Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy |
author |
Scarfone,A. M. |
author_facet |
Scarfone,A. M. Wada,T. |
author_role |
author |
author2 |
Wada,T. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Scarfone,A. M. Wada,T. |
dc.subject.por.fl_str_mv |
Nonlinear Fokker-Planck equation Sharma-Taneja-Mittal entropy Lie symmetries Group invariant solutions |
topic |
Nonlinear Fokker-Planck equation Sharma-Taneja-Mittal entropy Lie symmetries Group invariant solutions |
description |
In the framework of the statistical mechanics based on the Sharma-Taneja-Mittal entropy we derive a family of nonlinear Fokker-Planck equations characterized by the associated non-increasing Lyapunov functional. This class of equations describes kinetic processes in anomalous mediums where both super-diffusive and subdiffusive mechanisms arise contemporarily and competitively. We classify the Lie symmetries and derive the corresponding group-invariant solutions for the physically meaningful Uhlenbeck-Ornstein process. For the purely diffusive process we show that any localized state asymptotically approaches a bell shape well fitted by a generalized Gaussian which is, in general, a quasi-self-similar solution for this class of purely diffusive equations. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400024 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400024 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332009000400024 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.39 n.2a 2009 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734865184456704 |