Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy

Detalhes bibliográficos
Autor(a) principal: Scarfone,A. M.
Data de Publicação: 2009
Outros Autores: Wada,T.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400024
Resumo: In the framework of the statistical mechanics based on the Sharma-Taneja-Mittal entropy we derive a family of nonlinear Fokker-Planck equations characterized by the associated non-increasing Lyapunov functional. This class of equations describes kinetic processes in anomalous mediums where both super-diffusive and subdiffusive mechanisms arise contemporarily and competitively. We classify the Lie symmetries and derive the corresponding group-invariant solutions for the physically meaningful Uhlenbeck-Ornstein process. For the purely diffusive process we show that any localized state asymptotically approaches a bell shape well fitted by a generalized Gaussian which is, in general, a quasi-self-similar solution for this class of purely diffusive equations.
id SBF-2_8ede355a3eddbfd4fcc89a504629afb6
oai_identifier_str oai:scielo:S0103-97332009000400024
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropyNonlinear Fokker-Planck equationSharma-Taneja-Mittal entropyLie symmetriesGroup invariant solutionsIn the framework of the statistical mechanics based on the Sharma-Taneja-Mittal entropy we derive a family of nonlinear Fokker-Planck equations characterized by the associated non-increasing Lyapunov functional. This class of equations describes kinetic processes in anomalous mediums where both super-diffusive and subdiffusive mechanisms arise contemporarily and competitively. We classify the Lie symmetries and derive the corresponding group-invariant solutions for the physically meaningful Uhlenbeck-Ornstein process. For the purely diffusive process we show that any localized state asymptotically approaches a bell shape well fitted by a generalized Gaussian which is, in general, a quasi-self-similar solution for this class of purely diffusive equations.Sociedade Brasileira de Física2009-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400024Brazilian Journal of Physics v.39 n.2a 2009reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332009000400024info:eu-repo/semantics/openAccessScarfone,A. M.Wada,T.eng2009-09-10T00:00:00Zoai:scielo:S0103-97332009000400024Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2009-09-10T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
title Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
spellingShingle Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
Scarfone,A. M.
Nonlinear Fokker-Planck equation
Sharma-Taneja-Mittal entropy
Lie symmetries
Group invariant solutions
title_short Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
title_full Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
title_fullStr Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
title_full_unstemmed Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
title_sort Lie symmetries and related group-invariant solutions of a nonlinear Fokker-Planck equation based on the Sharma-Taneja-Mittal entropy
author Scarfone,A. M.
author_facet Scarfone,A. M.
Wada,T.
author_role author
author2 Wada,T.
author2_role author
dc.contributor.author.fl_str_mv Scarfone,A. M.
Wada,T.
dc.subject.por.fl_str_mv Nonlinear Fokker-Planck equation
Sharma-Taneja-Mittal entropy
Lie symmetries
Group invariant solutions
topic Nonlinear Fokker-Planck equation
Sharma-Taneja-Mittal entropy
Lie symmetries
Group invariant solutions
description In the framework of the statistical mechanics based on the Sharma-Taneja-Mittal entropy we derive a family of nonlinear Fokker-Planck equations characterized by the associated non-increasing Lyapunov functional. This class of equations describes kinetic processes in anomalous mediums where both super-diffusive and subdiffusive mechanisms arise contemporarily and competitively. We classify the Lie symmetries and derive the corresponding group-invariant solutions for the physically meaningful Uhlenbeck-Ornstein process. For the purely diffusive process we show that any localized state asymptotically approaches a bell shape well fitted by a generalized Gaussian which is, in general, a quasi-self-similar solution for this class of purely diffusive equations.
publishDate 2009
dc.date.none.fl_str_mv 2009-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400024
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000400024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332009000400024
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.39 n.2a 2009
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734865184456704