Kinematic self-similar solutions of locally rotationally symmetric spacetimes

Detalhes bibliográficos
Autor(a) principal: Sharif,M.
Data de Publicação: 2010
Outros Autores: Amir,M. Jamil
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332010000200015
Resumo: This paper contains locally rotationally symmetric kinematic self-similar perfect fluid and dust solutions. We consider three families of metrics which admit kinematic self-similar vectors of the first, second, zeroth and infinite kinds, not only for the tilted fluid case but also for the parallel and orthogonal cases. It is found that the orthogonal case gives contradiction both in perfect fluid and dust cases for all the three metrics while the tilted case reduces to the parallel case in both perfect fluid and dust cases for the second metric. The remaining cases give self-similar solutions of different kinds. We obtain a total of seventeen independent solutions out of which two are vacuum. The third metric yields contradiction in all the cases.
id SBF-2_bd916712a37e70971229b7340d9be1ce
oai_identifier_str oai:scielo:S0103-97332010000200015
network_acronym_str SBF-2
network_name_str Brazilian Journal of Physics
repository_id_str
spelling Kinematic self-similar solutions of locally rotationally symmetric spacetimesLocally rotationally symmetricSelf-similarityThis paper contains locally rotationally symmetric kinematic self-similar perfect fluid and dust solutions. We consider three families of metrics which admit kinematic self-similar vectors of the first, second, zeroth and infinite kinds, not only for the tilted fluid case but also for the parallel and orthogonal cases. It is found that the orthogonal case gives contradiction both in perfect fluid and dust cases for all the three metrics while the tilted case reduces to the parallel case in both perfect fluid and dust cases for the second metric. The remaining cases give self-similar solutions of different kinds. We obtain a total of seventeen independent solutions out of which two are vacuum. The third metric yields contradiction in all the cases.Sociedade Brasileira de Física2010-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332010000200015Brazilian Journal of Physics v.40 n.2 2010reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332010000200015info:eu-repo/semantics/openAccessSharif,M.Amir,M. Jamileng2010-06-23T00:00:00Zoai:scielo:S0103-97332010000200015Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2010-06-23T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false
dc.title.none.fl_str_mv Kinematic self-similar solutions of locally rotationally symmetric spacetimes
title Kinematic self-similar solutions of locally rotationally symmetric spacetimes
spellingShingle Kinematic self-similar solutions of locally rotationally symmetric spacetimes
Sharif,M.
Locally rotationally symmetric
Self-similarity
title_short Kinematic self-similar solutions of locally rotationally symmetric spacetimes
title_full Kinematic self-similar solutions of locally rotationally symmetric spacetimes
title_fullStr Kinematic self-similar solutions of locally rotationally symmetric spacetimes
title_full_unstemmed Kinematic self-similar solutions of locally rotationally symmetric spacetimes
title_sort Kinematic self-similar solutions of locally rotationally symmetric spacetimes
author Sharif,M.
author_facet Sharif,M.
Amir,M. Jamil
author_role author
author2 Amir,M. Jamil
author2_role author
dc.contributor.author.fl_str_mv Sharif,M.
Amir,M. Jamil
dc.subject.por.fl_str_mv Locally rotationally symmetric
Self-similarity
topic Locally rotationally symmetric
Self-similarity
description This paper contains locally rotationally symmetric kinematic self-similar perfect fluid and dust solutions. We consider three families of metrics which admit kinematic self-similar vectors of the first, second, zeroth and infinite kinds, not only for the tilted fluid case but also for the parallel and orthogonal cases. It is found that the orthogonal case gives contradiction both in perfect fluid and dust cases for all the three metrics while the tilted case reduces to the parallel case in both perfect fluid and dust cases for the second metric. The remaining cases give self-similar solutions of different kinds. We obtain a total of seventeen independent solutions out of which two are vacuum. The third metric yields contradiction in all the cases.
publishDate 2010
dc.date.none.fl_str_mv 2010-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332010000200015
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332010000200015
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0103-97332010000200015
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Física
publisher.none.fl_str_mv Sociedade Brasileira de Física
dc.source.none.fl_str_mv Brazilian Journal of Physics v.40 n.2 2010
reponame:Brazilian Journal of Physics
instname:Sociedade Brasileira de Física (SBF)
instacron:SBF
instname_str Sociedade Brasileira de Física (SBF)
instacron_str SBF
institution SBF
reponame_str Brazilian Journal of Physics
collection Brazilian Journal of Physics
repository.name.fl_str_mv Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)
repository.mail.fl_str_mv sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br
_version_ 1754734865396269056