Galerkin-method approach to nonlinear soliton classical stability
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Physics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300007 |
Resumo: | We examine the evolution of perturbations on the kink configuration in <FONT FACE=Symbol>l f</FONT>4 theory and of the Nielsen-Olesen vortex in scalar electrodynamics through the Galerkin method. The problem is reduced to a finite dynamical system for which the linear and nonlinear regimes are studied. The linear stability of both is associated to a motion in a stable torus present in phase space, whereas the nonlinear evolution of perturbations can be viewed as a consequence of the breakdown of the tori structure and the onset of chaos. We discuss this regime in connection with the stability of the configurations. Also, the Galerkin method is used to obtain approximate analytical expressions for the vortex profile. |
id |
SBF-2_d95b74d98239a25b58cd25808ce2b140 |
---|---|
oai_identifier_str |
oai:scielo:S0103-97332007000300007 |
network_acronym_str |
SBF-2 |
network_name_str |
Brazilian Journal of Physics |
repository_id_str |
|
spelling |
Galerkin-method approach to nonlinear soliton classical stabilityStability of solitonsNielsen-Olesen vortexGalerkin modelWe examine the evolution of perturbations on the kink configuration in <FONT FACE=Symbol>l f</FONT>4 theory and of the Nielsen-Olesen vortex in scalar electrodynamics through the Galerkin method. The problem is reduced to a finite dynamical system for which the linear and nonlinear regimes are studied. The linear stability of both is associated to a motion in a stable torus present in phase space, whereas the nonlinear evolution of perturbations can be viewed as a consequence of the breakdown of the tori structure and the onset of chaos. We discuss this regime in connection with the stability of the configurations. Also, the Galerkin method is used to obtain approximate analytical expressions for the vortex profile.Sociedade Brasileira de Física2007-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300007Brazilian Journal of Physics v.37 n.2a 2007reponame:Brazilian Journal of Physicsinstname:Sociedade Brasileira de Física (SBF)instacron:SBF10.1590/S0103-97332007000300007info:eu-repo/semantics/openAccessLinhares,C. A.Oliveira,H. P. deeng2007-07-17T00:00:00Zoai:scielo:S0103-97332007000300007Revistahttp://www.sbfisica.org.br/v1/home/index.php/pt/ONGhttps://old.scielo.br/oai/scielo-oai.phpsbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br1678-44480103-9733opendoar:2007-07-17T00:00Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF)false |
dc.title.none.fl_str_mv |
Galerkin-method approach to nonlinear soliton classical stability |
title |
Galerkin-method approach to nonlinear soliton classical stability |
spellingShingle |
Galerkin-method approach to nonlinear soliton classical stability Linhares,C. A. Stability of solitons Nielsen-Olesen vortex Galerkin model |
title_short |
Galerkin-method approach to nonlinear soliton classical stability |
title_full |
Galerkin-method approach to nonlinear soliton classical stability |
title_fullStr |
Galerkin-method approach to nonlinear soliton classical stability |
title_full_unstemmed |
Galerkin-method approach to nonlinear soliton classical stability |
title_sort |
Galerkin-method approach to nonlinear soliton classical stability |
author |
Linhares,C. A. |
author_facet |
Linhares,C. A. Oliveira,H. P. de |
author_role |
author |
author2 |
Oliveira,H. P. de |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Linhares,C. A. Oliveira,H. P. de |
dc.subject.por.fl_str_mv |
Stability of solitons Nielsen-Olesen vortex Galerkin model |
topic |
Stability of solitons Nielsen-Olesen vortex Galerkin model |
description |
We examine the evolution of perturbations on the kink configuration in <FONT FACE=Symbol>l f</FONT>4 theory and of the Nielsen-Olesen vortex in scalar electrodynamics through the Galerkin method. The problem is reduced to a finite dynamical system for which the linear and nonlinear regimes are studied. The linear stability of both is associated to a motion in a stable torus present in phase space, whereas the nonlinear evolution of perturbations can be viewed as a consequence of the breakdown of the tori structure and the onset of chaos. We discuss this regime in connection with the stability of the configurations. Also, the Galerkin method is used to obtain approximate analytical expressions for the vortex profile. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300007 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332007000300007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0103-97332007000300007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
publisher.none.fl_str_mv |
Sociedade Brasileira de Física |
dc.source.none.fl_str_mv |
Brazilian Journal of Physics v.37 n.2a 2007 reponame:Brazilian Journal of Physics instname:Sociedade Brasileira de Física (SBF) instacron:SBF |
instname_str |
Sociedade Brasileira de Física (SBF) |
instacron_str |
SBF |
institution |
SBF |
reponame_str |
Brazilian Journal of Physics |
collection |
Brazilian Journal of Physics |
repository.name.fl_str_mv |
Brazilian Journal of Physics - Sociedade Brasileira de Física (SBF) |
repository.mail.fl_str_mv |
sbfisica@sbfisica.org.br||sbfisica@sbfisica.org.br |
_version_ |
1754734863769927680 |