(2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways

Detalhes bibliográficos
Autor(a) principal: Zhang,Hua
Data de Publicação: 2018
Outros Autores: Zhang,Guo-Peng, Jiang,Hong, Gong,Zheng-Feng
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Farmacognosia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2018000400468
Resumo: Abstract Flavones have the potential of being used as a dietary supplement for bone health promotion beyond calcium and vitamin D. Recent studies have showed that flavones enhanced bone formation and inhibited bone resorption by affecting osteoblast and osteoclast differentiation through various cell signaling pathways. In this study, we investigated the effects of a new flavone (2R,3S)-pinobanksin-3-cinnamate, isolated from the metabolites of the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius L., Acanthaceae, on osteoblast differentiation by using MC3T3-E1 cells. It was observed that (2R,3S)-pinobanksin-3-cinnamate promoted osteoblast differentiation, as evidenced by increased mineralization process and alkaline phosphatase activity, as well as expression of genes encoding the bone differentiation. Moreover (2R,3S)-pinobanksin-3-cinnamate treatment upregulated the gene expression of wingless-type MMTV integration site family, bone morphogenetic protein and runt-related transcription factor 2, and protein expression of phosphor-Smad1/5/8, β-catenin and runt-related transcription factor 2 in MC3T3-E1 cells. The osteoblast differentiation effects induced by (2R,3S)-pinobanksin-3-cinnamate were attenuated by the bone morphogenetic protein antagonist Noggin, and wingless-type MMTV integration site family signaling pathway inhibitors Dickkopf-1. Co-treatment with adenosine 30,50-cyclic monophosphate and guanosine 30,50-cyclic monophosphate pathway inhibitors, H89 and KT5823, respectively, reversed the (2R,3S)-pinobanksin-3-cinnamate-induced activations of p-Smad1/5/8, β-catenin, and runt-related transcription factor 2. Our data demonstrated that (2R,3S)-pinobanksin-3-cinnamate promoted the osteoblast differentiation of MC3T3-E1 cells, at least partially through the adenosine 30,50-cyclic monophosphate and guanosine 30,50-cyclic monophosphate signaling pathways, providing the scientific rational to develop (2R,3S)-pinobanksin-3-cinnamate against bone loss-associated diseases.
id SBFGNOSIA-1_e8c771ab65be5bac2594d41b03f309f2
oai_identifier_str oai:scielo:S0102-695X2018000400468
network_acronym_str SBFGNOSIA-1
network_name_str Revista Brasileira de Farmacognosia (Online)
repository_id_str
spelling (2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways(2R ;3S)-pinobanksin-3-cinnamateOsteoblast differentiationMC3T3-E1 cellscAMPcGMPAbstract Flavones have the potential of being used as a dietary supplement for bone health promotion beyond calcium and vitamin D. Recent studies have showed that flavones enhanced bone formation and inhibited bone resorption by affecting osteoblast and osteoclast differentiation through various cell signaling pathways. In this study, we investigated the effects of a new flavone (2R,3S)-pinobanksin-3-cinnamate, isolated from the metabolites of the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius L., Acanthaceae, on osteoblast differentiation by using MC3T3-E1 cells. It was observed that (2R,3S)-pinobanksin-3-cinnamate promoted osteoblast differentiation, as evidenced by increased mineralization process and alkaline phosphatase activity, as well as expression of genes encoding the bone differentiation. Moreover (2R,3S)-pinobanksin-3-cinnamate treatment upregulated the gene expression of wingless-type MMTV integration site family, bone morphogenetic protein and runt-related transcription factor 2, and protein expression of phosphor-Smad1/5/8, β-catenin and runt-related transcription factor 2 in MC3T3-E1 cells. The osteoblast differentiation effects induced by (2R,3S)-pinobanksin-3-cinnamate were attenuated by the bone morphogenetic protein antagonist Noggin, and wingless-type MMTV integration site family signaling pathway inhibitors Dickkopf-1. Co-treatment with adenosine 30,50-cyclic monophosphate and guanosine 30,50-cyclic monophosphate pathway inhibitors, H89 and KT5823, respectively, reversed the (2R,3S)-pinobanksin-3-cinnamate-induced activations of p-Smad1/5/8, β-catenin, and runt-related transcription factor 2. Our data demonstrated that (2R,3S)-pinobanksin-3-cinnamate promoted the osteoblast differentiation of MC3T3-E1 cells, at least partially through the adenosine 30,50-cyclic monophosphate and guanosine 30,50-cyclic monophosphate signaling pathways, providing the scientific rational to develop (2R,3S)-pinobanksin-3-cinnamate against bone loss-associated diseases.Sociedade Brasileira de Farmacognosia2018-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2018000400468Revista Brasileira de Farmacognosia v.28 n.4 2018reponame:Revista Brasileira de Farmacognosia (Online)instname:Sociedade Brasileira de Farmacognosia (SBFgnosia)instacron:SBFGNOSIA10.1016/j.bjp.2018.05.006info:eu-repo/semantics/openAccessZhang,HuaZhang,Guo-PengJiang,HongGong,Zheng-Fengeng2018-08-13T00:00:00Zoai:scielo:S0102-695X2018000400468Revistahttp://www.sbfgnosia.org.br/revista/https://old.scielo.br/oai/scielo-oai.phprbgnosia@ltf.ufpb.br1981-528X0102-695Xopendoar:2018-08-13T00:00Revista Brasileira de Farmacognosia (Online) - Sociedade Brasileira de Farmacognosia (SBFgnosia)false
dc.title.none.fl_str_mv (2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways
title (2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways
spellingShingle (2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways
Zhang,Hua
(2R ;3S)-pinobanksin-3-cinnamate
Osteoblast differentiation
MC3T3-E1 cells
cAMP
cGMP
title_short (2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways
title_full (2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways
title_fullStr (2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways
title_full_unstemmed (2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways
title_sort (2R,3S)-Pinobanksin-3-cinnamate promotes osteoblast differentiation through cAMP and cGMP pathways
author Zhang,Hua
author_facet Zhang,Hua
Zhang,Guo-Peng
Jiang,Hong
Gong,Zheng-Feng
author_role author
author2 Zhang,Guo-Peng
Jiang,Hong
Gong,Zheng-Feng
author2_role author
author
author
dc.contributor.author.fl_str_mv Zhang,Hua
Zhang,Guo-Peng
Jiang,Hong
Gong,Zheng-Feng
dc.subject.por.fl_str_mv (2R ;3S)-pinobanksin-3-cinnamate
Osteoblast differentiation
MC3T3-E1 cells
cAMP
cGMP
topic (2R ;3S)-pinobanksin-3-cinnamate
Osteoblast differentiation
MC3T3-E1 cells
cAMP
cGMP
description Abstract Flavones have the potential of being used as a dietary supplement for bone health promotion beyond calcium and vitamin D. Recent studies have showed that flavones enhanced bone formation and inhibited bone resorption by affecting osteoblast and osteoclast differentiation through various cell signaling pathways. In this study, we investigated the effects of a new flavone (2R,3S)-pinobanksin-3-cinnamate, isolated from the metabolites of the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius L., Acanthaceae, on osteoblast differentiation by using MC3T3-E1 cells. It was observed that (2R,3S)-pinobanksin-3-cinnamate promoted osteoblast differentiation, as evidenced by increased mineralization process and alkaline phosphatase activity, as well as expression of genes encoding the bone differentiation. Moreover (2R,3S)-pinobanksin-3-cinnamate treatment upregulated the gene expression of wingless-type MMTV integration site family, bone morphogenetic protein and runt-related transcription factor 2, and protein expression of phosphor-Smad1/5/8, β-catenin and runt-related transcription factor 2 in MC3T3-E1 cells. The osteoblast differentiation effects induced by (2R,3S)-pinobanksin-3-cinnamate were attenuated by the bone morphogenetic protein antagonist Noggin, and wingless-type MMTV integration site family signaling pathway inhibitors Dickkopf-1. Co-treatment with adenosine 30,50-cyclic monophosphate and guanosine 30,50-cyclic monophosphate pathway inhibitors, H89 and KT5823, respectively, reversed the (2R,3S)-pinobanksin-3-cinnamate-induced activations of p-Smad1/5/8, β-catenin, and runt-related transcription factor 2. Our data demonstrated that (2R,3S)-pinobanksin-3-cinnamate promoted the osteoblast differentiation of MC3T3-E1 cells, at least partially through the adenosine 30,50-cyclic monophosphate and guanosine 30,50-cyclic monophosphate signaling pathways, providing the scientific rational to develop (2R,3S)-pinobanksin-3-cinnamate against bone loss-associated diseases.
publishDate 2018
dc.date.none.fl_str_mv 2018-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2018000400468
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2018000400468
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.bjp.2018.05.006
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Farmacognosia
publisher.none.fl_str_mv Sociedade Brasileira de Farmacognosia
dc.source.none.fl_str_mv Revista Brasileira de Farmacognosia v.28 n.4 2018
reponame:Revista Brasileira de Farmacognosia (Online)
instname:Sociedade Brasileira de Farmacognosia (SBFgnosia)
instacron:SBFGNOSIA
instname_str Sociedade Brasileira de Farmacognosia (SBFgnosia)
instacron_str SBFGNOSIA
institution SBFGNOSIA
reponame_str Revista Brasileira de Farmacognosia (Online)
collection Revista Brasileira de Farmacognosia (Online)
repository.name.fl_str_mv Revista Brasileira de Farmacognosia (Online) - Sociedade Brasileira de Farmacognosia (SBFgnosia)
repository.mail.fl_str_mv rbgnosia@ltf.ufpb.br
_version_ 1752122470991659008