A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models

Detalhes bibliográficos
Autor(a) principal: Diniz-Filho,José Alexandre F.
Data de Publicação: 2012
Outros Autores: Santos,Thiago, Rangel,Thiago Fernando, Bini,Luis Mauricio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Genetics and Molecular Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572012000400019
Resumo: Several metrics have been developed for estimating phylogenetic signal in comparative data. These may be important both in guiding future studies on correlated evolution and for inferring broad-scale evolutionary and ecological processes (e.g., phylogenetic niche conservatism). Notwithstanding, the validity of some of these metrics is under debate, especially after the development of more sophisticated model-based approaches that estimate departure from particular evolutionary models (i.e., Brownian motion). Here, two of these model-based metrics (Blomberg's K-statistics and Pagel's λ) are compared with three statistical approaches [Moran's I autocorrelation coefficient, coefficients of determination from the autoregressive method (ARM), and phylogenetic eigenvector regression (PVR)]. Based on simulations of a trait evolving under Brownian motion for a phylogeny with 209 species, we showed that all metrics are strongly, although non-linearly, correlated to each other. Our analyses revealed that statistical approaches provide valid results and may be still particularly useful when detailed phylogenies are unavailable or when trait variation among species is difficult to describe by more standard Brownian or O-U evolutionary models.
id SBG-1_1cdb918ed4ee561c7bc8b96145f49201
oai_identifier_str oai:scielo:S1415-47572012000400019
network_acronym_str SBG-1
network_name_str Genetics and Molecular Biology
repository_id_str
spelling A comparison of metrics for estimating phylogenetic signal under alternative evolutionary modelsautocorrelationBlomberg's KPagel's lambdaautoregressive methodMoran's Iphylogenetic eigenvector regressionSeveral metrics have been developed for estimating phylogenetic signal in comparative data. These may be important both in guiding future studies on correlated evolution and for inferring broad-scale evolutionary and ecological processes (e.g., phylogenetic niche conservatism). Notwithstanding, the validity of some of these metrics is under debate, especially after the development of more sophisticated model-based approaches that estimate departure from particular evolutionary models (i.e., Brownian motion). Here, two of these model-based metrics (Blomberg's K-statistics and Pagel's λ) are compared with three statistical approaches [Moran's I autocorrelation coefficient, coefficients of determination from the autoregressive method (ARM), and phylogenetic eigenvector regression (PVR)]. Based on simulations of a trait evolving under Brownian motion for a phylogeny with 209 species, we showed that all metrics are strongly, although non-linearly, correlated to each other. Our analyses revealed that statistical approaches provide valid results and may be still particularly useful when detailed phylogenies are unavailable or when trait variation among species is difficult to describe by more standard Brownian or O-U evolutionary models.Sociedade Brasileira de Genética2012-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572012000400019Genetics and Molecular Biology v.35 n.3 2012reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/S1415-47572012005000053info:eu-repo/semantics/openAccessDiniz-Filho,José Alexandre F.Santos,ThiagoRangel,Thiago FernandoBini,Luis Mauricioeng2012-08-10T00:00:00Zoai:scielo:S1415-47572012000400019Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2012-08-10T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false
dc.title.none.fl_str_mv A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models
title A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models
spellingShingle A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models
Diniz-Filho,José Alexandre F.
autocorrelation
Blomberg's K
Pagel's lambda
autoregressive method
Moran's I
phylogenetic eigenvector regression
title_short A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models
title_full A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models
title_fullStr A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models
title_full_unstemmed A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models
title_sort A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models
author Diniz-Filho,José Alexandre F.
author_facet Diniz-Filho,José Alexandre F.
Santos,Thiago
Rangel,Thiago Fernando
Bini,Luis Mauricio
author_role author
author2 Santos,Thiago
Rangel,Thiago Fernando
Bini,Luis Mauricio
author2_role author
author
author
dc.contributor.author.fl_str_mv Diniz-Filho,José Alexandre F.
Santos,Thiago
Rangel,Thiago Fernando
Bini,Luis Mauricio
dc.subject.por.fl_str_mv autocorrelation
Blomberg's K
Pagel's lambda
autoregressive method
Moran's I
phylogenetic eigenvector regression
topic autocorrelation
Blomberg's K
Pagel's lambda
autoregressive method
Moran's I
phylogenetic eigenvector regression
description Several metrics have been developed for estimating phylogenetic signal in comparative data. These may be important both in guiding future studies on correlated evolution and for inferring broad-scale evolutionary and ecological processes (e.g., phylogenetic niche conservatism). Notwithstanding, the validity of some of these metrics is under debate, especially after the development of more sophisticated model-based approaches that estimate departure from particular evolutionary models (i.e., Brownian motion). Here, two of these model-based metrics (Blomberg's K-statistics and Pagel's λ) are compared with three statistical approaches [Moran's I autocorrelation coefficient, coefficients of determination from the autoregressive method (ARM), and phylogenetic eigenvector regression (PVR)]. Based on simulations of a trait evolving under Brownian motion for a phylogeny with 209 species, we showed that all metrics are strongly, although non-linearly, correlated to each other. Our analyses revealed that statistical approaches provide valid results and may be still particularly useful when detailed phylogenies are unavailable or when trait variation among species is difficult to describe by more standard Brownian or O-U evolutionary models.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572012000400019
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572012000400019
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1415-47572012005000053
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv Genetics and Molecular Biology v.35 n.3 2012
reponame:Genetics and Molecular Biology
instname:Sociedade Brasileira de Genética (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Genética (SBG)
instacron_str SBG
institution SBG
reponame_str Genetics and Molecular Biology
collection Genetics and Molecular Biology
repository.name.fl_str_mv Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)
repository.mail.fl_str_mv ||editor@gmb.org.br
_version_ 1752122385069244416