Purine and pyrimidine nucleotide metabolism in Mollicutes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Genetics and Molecular Biology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572007000200005 |
Resumo: | Several mollicute genome projects are underway, offering unique opportunities to study genes and metabolic pathways on a genome-wide scale. Here, we have analyzed the conservation and diversity of purine and pyrimidine metabolism in mycoplasmas. An evaluation of discrepancies between genomic analysis and enzymatic data revealed interesting aspects about these organisms. We found important examples in which enzyme activity was reported without the annotation of a corresponding gene. An interesting example concerns phosphopentomutase. In Mollicutes, we have identified CDSs orthologous to sequences recently identified as new phosphopentomutases in archaeobacteria that are structurally related to phosphomannomutases. It is suggested that these sequences could replace the function of phosphopentomutases in mollicutes lacking the canonical phosphopentomutase gene (deoB). Also, the activity of 5'-nucleotidase was reported in mollicutes that do not possess any CDS related to ushA. Hypothetical proteins exhibiting domains similar to newly characterized 5' nucleotidases in Escherichia coli are proposed as possible CDSs related to this enzymatic activity in Mollicutes. Based on our analysis, the reductive genome evolution of Mollicutes does not appear to result in a minimum set of genes nor a minimum set of metabolic functions shared by all mollicute species. |
id |
SBG-1_24ba8aa3030c49a871aabaff89a16afc |
---|---|
oai_identifier_str |
oai:scielo:S1415-47572007000200005 |
network_acronym_str |
SBG-1 |
network_name_str |
Genetics and Molecular Biology |
repository_id_str |
|
spelling |
Purine and pyrimidine nucleotide metabolism in Mollicutesmollicutespurinepyrimidinemetabolismmetabolic pathwaysSeveral mollicute genome projects are underway, offering unique opportunities to study genes and metabolic pathways on a genome-wide scale. Here, we have analyzed the conservation and diversity of purine and pyrimidine metabolism in mycoplasmas. An evaluation of discrepancies between genomic analysis and enzymatic data revealed interesting aspects about these organisms. We found important examples in which enzyme activity was reported without the annotation of a corresponding gene. An interesting example concerns phosphopentomutase. In Mollicutes, we have identified CDSs orthologous to sequences recently identified as new phosphopentomutases in archaeobacteria that are structurally related to phosphomannomutases. It is suggested that these sequences could replace the function of phosphopentomutases in mollicutes lacking the canonical phosphopentomutase gene (deoB). Also, the activity of 5'-nucleotidase was reported in mollicutes that do not possess any CDS related to ushA. Hypothetical proteins exhibiting domains similar to newly characterized 5' nucleotidases in Escherichia coli are proposed as possible CDSs related to this enzymatic activity in Mollicutes. Based on our analysis, the reductive genome evolution of Mollicutes does not appear to result in a minimum set of genes nor a minimum set of metabolic functions shared by all mollicute species.Sociedade Brasileira de Genética2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572007000200005Genetics and Molecular Biology v.30 n.1 suppl.0 2007reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/S1415-47572007000200005info:eu-repo/semantics/openAccessBizarro,Cristiano ValimSchuck,Desirée Cigaraneng2007-05-14T00:00:00Zoai:scielo:S1415-47572007000200005Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2007-05-14T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false |
dc.title.none.fl_str_mv |
Purine and pyrimidine nucleotide metabolism in Mollicutes |
title |
Purine and pyrimidine nucleotide metabolism in Mollicutes |
spellingShingle |
Purine and pyrimidine nucleotide metabolism in Mollicutes Bizarro,Cristiano Valim mollicutes purine pyrimidine metabolism metabolic pathways |
title_short |
Purine and pyrimidine nucleotide metabolism in Mollicutes |
title_full |
Purine and pyrimidine nucleotide metabolism in Mollicutes |
title_fullStr |
Purine and pyrimidine nucleotide metabolism in Mollicutes |
title_full_unstemmed |
Purine and pyrimidine nucleotide metabolism in Mollicutes |
title_sort |
Purine and pyrimidine nucleotide metabolism in Mollicutes |
author |
Bizarro,Cristiano Valim |
author_facet |
Bizarro,Cristiano Valim Schuck,Desirée Cigaran |
author_role |
author |
author2 |
Schuck,Desirée Cigaran |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Bizarro,Cristiano Valim Schuck,Desirée Cigaran |
dc.subject.por.fl_str_mv |
mollicutes purine pyrimidine metabolism metabolic pathways |
topic |
mollicutes purine pyrimidine metabolism metabolic pathways |
description |
Several mollicute genome projects are underway, offering unique opportunities to study genes and metabolic pathways on a genome-wide scale. Here, we have analyzed the conservation and diversity of purine and pyrimidine metabolism in mycoplasmas. An evaluation of discrepancies between genomic analysis and enzymatic data revealed interesting aspects about these organisms. We found important examples in which enzyme activity was reported without the annotation of a corresponding gene. An interesting example concerns phosphopentomutase. In Mollicutes, we have identified CDSs orthologous to sequences recently identified as new phosphopentomutases in archaeobacteria that are structurally related to phosphomannomutases. It is suggested that these sequences could replace the function of phosphopentomutases in mollicutes lacking the canonical phosphopentomutase gene (deoB). Also, the activity of 5'-nucleotidase was reported in mollicutes that do not possess any CDS related to ushA. Hypothetical proteins exhibiting domains similar to newly characterized 5' nucleotidases in Escherichia coli are proposed as possible CDSs related to this enzymatic activity in Mollicutes. Based on our analysis, the reductive genome evolution of Mollicutes does not appear to result in a minimum set of genes nor a minimum set of metabolic functions shared by all mollicute species. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572007000200005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572007000200005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1415-47572007000200005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Genética |
publisher.none.fl_str_mv |
Sociedade Brasileira de Genética |
dc.source.none.fl_str_mv |
Genetics and Molecular Biology v.30 n.1 suppl.0 2007 reponame:Genetics and Molecular Biology instname:Sociedade Brasileira de Genética (SBG) instacron:SBG |
instname_str |
Sociedade Brasileira de Genética (SBG) |
instacron_str |
SBG |
institution |
SBG |
reponame_str |
Genetics and Molecular Biology |
collection |
Genetics and Molecular Biology |
repository.name.fl_str_mv |
Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG) |
repository.mail.fl_str_mv |
||editor@gmb.org.br |
_version_ |
1752122380329680896 |