Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs

Detalhes bibliográficos
Autor(a) principal: Kohn,Michael H.
Data de Publicação: 2008
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Genetics and Molecular Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572008000300028
Resumo: While it remains a matter of some debate, rapid sequence evolution of the coding sequences of duplicate genes is characteristic for early phases past duplication, but long established duplicates generally evolve under constraint, much like the rest of the coding genome. As for coding sequences, it may be possible to infer evolutionary rate, selection, and constraint via contrasts between duplicate gene divergence in the 5 prime regions and in the corresponding synonymous site divergence in the coding regions. Finding elevated rates for the 5 prime regions of duplicated genes, in addition to the coding regions, would enable statements regarding the early processes of duplicate gene evolution. Here, 1 kb of each of the 5 prime regulatory regions of Drosophila melanogaster duplicate gene pairs were mapped onto one another to isolate shared sequence blocks. Genetic distances within shared sequence blocks (d5’) were found to increase as a function of synonymous (dS), and to a lesser extend, amino-acid (dA) site divergence between duplicates. The rate d5’/dS was found to rapidly decay from values > 1 in young duplicate pairs (dS < 0.3) to 0.28 or less in older duplicates (dS > 0.8). Such rapid rates of 5 prime evolution exceeding 1 (~neutral) predominantly were found to occur in duplicate pairs with low amino-acid site divergence and that tended to be co-regulated when assayed on microarrays. Conceivably, functional redundancy and relaxation of selective constraint facilitates subsequent positive selection on the 5 prime regions of young duplicate genes. This might promote the evolution of new functions (neofunctionalization) or division of labor among duplicate genes (subfunctionalization). In contrast, similar to the vast portion of the non-coding genome, the 5 prime regions of long-established gene duplicates appear to evolve under selective constraint, indicating that these long-established gene duplicates have assumed critical functions.
id SBG-1_4c0073543bf810a3f1449d0e3c41f842
oai_identifier_str oai:scielo:S1415-47572008000300028
network_acronym_str SBG-1
network_name_str Genetics and Molecular Biology
repository_id_str
spelling Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairsgene duplicationgene expressionselectionpromoter evolutionWhile it remains a matter of some debate, rapid sequence evolution of the coding sequences of duplicate genes is characteristic for early phases past duplication, but long established duplicates generally evolve under constraint, much like the rest of the coding genome. As for coding sequences, it may be possible to infer evolutionary rate, selection, and constraint via contrasts between duplicate gene divergence in the 5 prime regions and in the corresponding synonymous site divergence in the coding regions. Finding elevated rates for the 5 prime regions of duplicated genes, in addition to the coding regions, would enable statements regarding the early processes of duplicate gene evolution. Here, 1 kb of each of the 5 prime regulatory regions of Drosophila melanogaster duplicate gene pairs were mapped onto one another to isolate shared sequence blocks. Genetic distances within shared sequence blocks (d5’) were found to increase as a function of synonymous (dS), and to a lesser extend, amino-acid (dA) site divergence between duplicates. The rate d5’/dS was found to rapidly decay from values > 1 in young duplicate pairs (dS < 0.3) to 0.28 or less in older duplicates (dS > 0.8). Such rapid rates of 5 prime evolution exceeding 1 (~neutral) predominantly were found to occur in duplicate pairs with low amino-acid site divergence and that tended to be co-regulated when assayed on microarrays. Conceivably, functional redundancy and relaxation of selective constraint facilitates subsequent positive selection on the 5 prime regions of young duplicate genes. This might promote the evolution of new functions (neofunctionalization) or division of labor among duplicate genes (subfunctionalization). In contrast, similar to the vast portion of the non-coding genome, the 5 prime regions of long-established gene duplicates appear to evolve under selective constraint, indicating that these long-established gene duplicates have assumed critical functions.Sociedade Brasileira de Genética2008-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572008000300028Genetics and Molecular Biology v.31 n.2 2008reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/S1415-47572008000300028info:eu-repo/semantics/openAccessKohn,Michael H.eng2008-06-24T00:00:00Zoai:scielo:S1415-47572008000300028Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2008-06-24T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false
dc.title.none.fl_str_mv Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs
title Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs
spellingShingle Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs
Kohn,Michael H.
gene duplication
gene expression
selection
promoter evolution
title_short Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs
title_full Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs
title_fullStr Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs
title_full_unstemmed Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs
title_sort Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs
author Kohn,Michael H.
author_facet Kohn,Michael H.
author_role author
dc.contributor.author.fl_str_mv Kohn,Michael H.
dc.subject.por.fl_str_mv gene duplication
gene expression
selection
promoter evolution
topic gene duplication
gene expression
selection
promoter evolution
description While it remains a matter of some debate, rapid sequence evolution of the coding sequences of duplicate genes is characteristic for early phases past duplication, but long established duplicates generally evolve under constraint, much like the rest of the coding genome. As for coding sequences, it may be possible to infer evolutionary rate, selection, and constraint via contrasts between duplicate gene divergence in the 5 prime regions and in the corresponding synonymous site divergence in the coding regions. Finding elevated rates for the 5 prime regions of duplicated genes, in addition to the coding regions, would enable statements regarding the early processes of duplicate gene evolution. Here, 1 kb of each of the 5 prime regulatory regions of Drosophila melanogaster duplicate gene pairs were mapped onto one another to isolate shared sequence blocks. Genetic distances within shared sequence blocks (d5’) were found to increase as a function of synonymous (dS), and to a lesser extend, amino-acid (dA) site divergence between duplicates. The rate d5’/dS was found to rapidly decay from values > 1 in young duplicate pairs (dS < 0.3) to 0.28 or less in older duplicates (dS > 0.8). Such rapid rates of 5 prime evolution exceeding 1 (~neutral) predominantly were found to occur in duplicate pairs with low amino-acid site divergence and that tended to be co-regulated when assayed on microarrays. Conceivably, functional redundancy and relaxation of selective constraint facilitates subsequent positive selection on the 5 prime regions of young duplicate genes. This might promote the evolution of new functions (neofunctionalization) or division of labor among duplicate genes (subfunctionalization). In contrast, similar to the vast portion of the non-coding genome, the 5 prime regions of long-established gene duplicates appear to evolve under selective constraint, indicating that these long-established gene duplicates have assumed critical functions.
publishDate 2008
dc.date.none.fl_str_mv 2008-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572008000300028
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572008000300028
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1415-47572008000300028
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv Genetics and Molecular Biology v.31 n.2 2008
reponame:Genetics and Molecular Biology
instname:Sociedade Brasileira de Genética (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Genética (SBG)
instacron_str SBG
institution SBG
reponame_str Genetics and Molecular Biology
collection Genetics and Molecular Biology
repository.name.fl_str_mv Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)
repository.mail.fl_str_mv ||editor@gmb.org.br
_version_ 1752122381189513216