Base excision repair in sugarcane

Detalhes bibliográficos
Autor(a) principal: Agnez-Lima,Lucymara F.
Data de Publicação: 2001
Outros Autores: Medeiros,Sílvia R. Batistuzzo de, Maggi,Bruno S., Quaresma,Giovanna A.S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Genetics and Molecular Biology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572001000100017
Resumo: DNA damage can be induced by a large number of physical and chemical agents from the environment as well as compounds produced by cellular metabolism. This type of damage can interfere with cellular processes such as replication and transcription, resulting in cell death and/or mutations. The low frequency of mutagenesis in cells is due to the presence of enzymatic pathways which repair damaged DNA. Several DNA repair genes (mainly from bacteria, yeasts and mammals) have been cloned and their products characterized. The high conservation, especially in eukaryotes, of the majority of genes related to DNA repair argues for their importance in the maintenance of life on earth. In plants, our understanding of DNA repair pathways is still very poor, the first plant repair genes having only been cloned in 1997 and the mechanisms of their products have not yet been characterized. The objective of our data mining work was to identify genes related to the base excision repair (BER) pathway, which are present in the database of the Sugarcane Expressed Sequence Tag (SUCEST) Project. This search was performed by tblastn program. We identified sugarcane clusters homologous to the majority of BER proteins used in the analysis and a high degree of conservation was observed. The best results were obtained with BER proteins from Arabidopsis thaliana. For some sugarcane BER genes, the presence of more than one form of mRNA is possible, as shown by the occurrence of more than one homologous EST cluster.
id SBG-1_bcf47807ca34010cbf2243b92e930eb2
oai_identifier_str oai:scielo:S1415-47572001000100017
network_acronym_str SBG-1
network_name_str Genetics and Molecular Biology
repository_id_str
spelling Base excision repair in sugarcaneDNA damage can be induced by a large number of physical and chemical agents from the environment as well as compounds produced by cellular metabolism. This type of damage can interfere with cellular processes such as replication and transcription, resulting in cell death and/or mutations. The low frequency of mutagenesis in cells is due to the presence of enzymatic pathways which repair damaged DNA. Several DNA repair genes (mainly from bacteria, yeasts and mammals) have been cloned and their products characterized. The high conservation, especially in eukaryotes, of the majority of genes related to DNA repair argues for their importance in the maintenance of life on earth. In plants, our understanding of DNA repair pathways is still very poor, the first plant repair genes having only been cloned in 1997 and the mechanisms of their products have not yet been characterized. The objective of our data mining work was to identify genes related to the base excision repair (BER) pathway, which are present in the database of the Sugarcane Expressed Sequence Tag (SUCEST) Project. This search was performed by tblastn program. We identified sugarcane clusters homologous to the majority of BER proteins used in the analysis and a high degree of conservation was observed. The best results were obtained with BER proteins from Arabidopsis thaliana. For some sugarcane BER genes, the presence of more than one form of mRNA is possible, as shown by the occurrence of more than one homologous EST cluster.Sociedade Brasileira de Genética2001-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572001000100017Genetics and Molecular Biology v.24 n.1-4 2001reponame:Genetics and Molecular Biologyinstname:Sociedade Brasileira de Genética (SBG)instacron:SBG10.1590/S1415-47572001000100017info:eu-repo/semantics/openAccessAgnez-Lima,Lucymara F.Medeiros,Sílvia R. Batistuzzo deMaggi,Bruno S.Quaresma,Giovanna A.S.eng2002-06-27T00:00:00Zoai:scielo:S1415-47572001000100017Revistahttp://www.gmb.org.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||editor@gmb.org.br1678-46851415-4757opendoar:2002-06-27T00:00Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)false
dc.title.none.fl_str_mv Base excision repair in sugarcane
title Base excision repair in sugarcane
spellingShingle Base excision repair in sugarcane
Agnez-Lima,Lucymara F.
title_short Base excision repair in sugarcane
title_full Base excision repair in sugarcane
title_fullStr Base excision repair in sugarcane
title_full_unstemmed Base excision repair in sugarcane
title_sort Base excision repair in sugarcane
author Agnez-Lima,Lucymara F.
author_facet Agnez-Lima,Lucymara F.
Medeiros,Sílvia R. Batistuzzo de
Maggi,Bruno S.
Quaresma,Giovanna A.S.
author_role author
author2 Medeiros,Sílvia R. Batistuzzo de
Maggi,Bruno S.
Quaresma,Giovanna A.S.
author2_role author
author
author
dc.contributor.author.fl_str_mv Agnez-Lima,Lucymara F.
Medeiros,Sílvia R. Batistuzzo de
Maggi,Bruno S.
Quaresma,Giovanna A.S.
description DNA damage can be induced by a large number of physical and chemical agents from the environment as well as compounds produced by cellular metabolism. This type of damage can interfere with cellular processes such as replication and transcription, resulting in cell death and/or mutations. The low frequency of mutagenesis in cells is due to the presence of enzymatic pathways which repair damaged DNA. Several DNA repair genes (mainly from bacteria, yeasts and mammals) have been cloned and their products characterized. The high conservation, especially in eukaryotes, of the majority of genes related to DNA repair argues for their importance in the maintenance of life on earth. In plants, our understanding of DNA repair pathways is still very poor, the first plant repair genes having only been cloned in 1997 and the mechanisms of their products have not yet been characterized. The objective of our data mining work was to identify genes related to the base excision repair (BER) pathway, which are present in the database of the Sugarcane Expressed Sequence Tag (SUCEST) Project. This search was performed by tblastn program. We identified sugarcane clusters homologous to the majority of BER proteins used in the analysis and a high degree of conservation was observed. The best results were obtained with BER proteins from Arabidopsis thaliana. For some sugarcane BER genes, the presence of more than one form of mRNA is possible, as shown by the occurrence of more than one homologous EST cluster.
publishDate 2001
dc.date.none.fl_str_mv 2001-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572001000100017
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-47572001000100017
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1415-47572001000100017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Genética
publisher.none.fl_str_mv Sociedade Brasileira de Genética
dc.source.none.fl_str_mv Genetics and Molecular Biology v.24 n.1-4 2001
reponame:Genetics and Molecular Biology
instname:Sociedade Brasileira de Genética (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Genética (SBG)
instacron_str SBG
institution SBG
reponame_str Genetics and Molecular Biology
collection Genetics and Molecular Biology
repository.name.fl_str_mv Genetics and Molecular Biology - Sociedade Brasileira de Genética (SBG)
repository.mail.fl_str_mv ||editor@gmb.org.br
_version_ 1752122378157031424