Refinement step for parameter estimation in the CRS method

Detalhes bibliográficos
Autor(a) principal: Majana,Farid
Data de Publicação: 2003
Outros Autores: Mascarenhas,Walter, Tygel,Martin, Santos,Lúcio T
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Geofísica (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2003000300007
Resumo: The Common Reflection Surface (CRS) method is a powerful extension of the well established Common Midpoint (CMP) method in the sense that it is able to accept, at each trace location on the zero-offset (ZO) section to be constructed, reflection data from source and receiver pairs that are arbitrarily located around that point. The CRS method uses the general hyperbolic moveout, that depends, in the 2D situation considered in this work, on three parameters. One of these parameters is the classical NMO velocity. As in the single-parameter CMP method, the CRS parameters or attributes are estimated by a direct application of suitable coherence analysis to the input multicoverage data. The estimation of the three CRS parameters is generally performed in two steps. The first step has a global character and aims in obtaining an initial estimate of the parameters. The second step has a local character, trying to refine the previous initial values to more accurate values. Here we focus on the refinement step assuming that initial estimates have been already provided. We review and compare three of these methods and compare their performances on illustrative synthetic and real data examples. Comparisons with the application of the conventional CMP method are also provided.
id SBG-3_7a75e2d3605f67e07863150145e95d97
oai_identifier_str oai:scielo:S0102-261X2003000300007
network_acronym_str SBG-3
network_name_str Revista Brasileira de Geofísica (Online)
repository_id_str
spelling Refinement step for parameter estimation in the CRS methodCRSOptimizationStackingThe Common Reflection Surface (CRS) method is a powerful extension of the well established Common Midpoint (CMP) method in the sense that it is able to accept, at each trace location on the zero-offset (ZO) section to be constructed, reflection data from source and receiver pairs that are arbitrarily located around that point. The CRS method uses the general hyperbolic moveout, that depends, in the 2D situation considered in this work, on three parameters. One of these parameters is the classical NMO velocity. As in the single-parameter CMP method, the CRS parameters or attributes are estimated by a direct application of suitable coherence analysis to the input multicoverage data. The estimation of the three CRS parameters is generally performed in two steps. The first step has a global character and aims in obtaining an initial estimate of the parameters. The second step has a local character, trying to refine the previous initial values to more accurate values. Here we focus on the refinement step assuming that initial estimates have been already provided. We review and compare three of these methods and compare their performances on illustrative synthetic and real data examples. Comparisons with the application of the conventional CMP method are also provided.Sociedade Brasileira de Geofísica2003-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2003000300007Revista Brasileira de Geofísica v.21 n.3 2003reponame:Revista Brasileira de Geofísica (Online)instname:Sociedade Brasileira de Geofísica (SBG)instacron:SBG10.1590/S0102-261X2003000300007info:eu-repo/semantics/openAccessMajana,FaridMascarenhas,WalterTygel,MartinSantos,Lúcio Teng2007-01-24T00:00:00Zoai:scielo:S0102-261X2003000300007Revistahttp://www.scielo.br/rbgONGhttps://old.scielo.br/oai/scielo-oai.php||sbgf@sbgf.org.br1809-45110102-261Xopendoar:2007-01-24T00:00Revista Brasileira de Geofísica (Online) - Sociedade Brasileira de Geofísica (SBG)false
dc.title.none.fl_str_mv Refinement step for parameter estimation in the CRS method
title Refinement step for parameter estimation in the CRS method
spellingShingle Refinement step for parameter estimation in the CRS method
Majana,Farid
CRS
Optimization
Stacking
title_short Refinement step for parameter estimation in the CRS method
title_full Refinement step for parameter estimation in the CRS method
title_fullStr Refinement step for parameter estimation in the CRS method
title_full_unstemmed Refinement step for parameter estimation in the CRS method
title_sort Refinement step for parameter estimation in the CRS method
author Majana,Farid
author_facet Majana,Farid
Mascarenhas,Walter
Tygel,Martin
Santos,Lúcio T
author_role author
author2 Mascarenhas,Walter
Tygel,Martin
Santos,Lúcio T
author2_role author
author
author
dc.contributor.author.fl_str_mv Majana,Farid
Mascarenhas,Walter
Tygel,Martin
Santos,Lúcio T
dc.subject.por.fl_str_mv CRS
Optimization
Stacking
topic CRS
Optimization
Stacking
description The Common Reflection Surface (CRS) method is a powerful extension of the well established Common Midpoint (CMP) method in the sense that it is able to accept, at each trace location on the zero-offset (ZO) section to be constructed, reflection data from source and receiver pairs that are arbitrarily located around that point. The CRS method uses the general hyperbolic moveout, that depends, in the 2D situation considered in this work, on three parameters. One of these parameters is the classical NMO velocity. As in the single-parameter CMP method, the CRS parameters or attributes are estimated by a direct application of suitable coherence analysis to the input multicoverage data. The estimation of the three CRS parameters is generally performed in two steps. The first step has a global character and aims in obtaining an initial estimate of the parameters. The second step has a local character, trying to refine the previous initial values to more accurate values. Here we focus on the refinement step assuming that initial estimates have been already provided. We review and compare three of these methods and compare their performances on illustrative synthetic and real data examples. Comparisons with the application of the conventional CMP method are also provided.
publishDate 2003
dc.date.none.fl_str_mv 2003-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2003000300007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2003000300007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0102-261X2003000300007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Geofísica
publisher.none.fl_str_mv Sociedade Brasileira de Geofísica
dc.source.none.fl_str_mv Revista Brasileira de Geofísica v.21 n.3 2003
reponame:Revista Brasileira de Geofísica (Online)
instname:Sociedade Brasileira de Geofísica (SBG)
instacron:SBG
instname_str Sociedade Brasileira de Geofísica (SBG)
instacron_str SBG
institution SBG
reponame_str Revista Brasileira de Geofísica (Online)
collection Revista Brasileira de Geofísica (Online)
repository.name.fl_str_mv Revista Brasileira de Geofísica (Online) - Sociedade Brasileira de Geofísica (SBG)
repository.mail.fl_str_mv ||sbgf@sbgf.org.br
_version_ 1754820936344797184