Refinement step for parameter estimation in the CRS method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Geofísica (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2003000300007 |
Resumo: | The Common Reflection Surface (CRS) method is a powerful extension of the well established Common Midpoint (CMP) method in the sense that it is able to accept, at each trace location on the zero-offset (ZO) section to be constructed, reflection data from source and receiver pairs that are arbitrarily located around that point. The CRS method uses the general hyperbolic moveout, that depends, in the 2D situation considered in this work, on three parameters. One of these parameters is the classical NMO velocity. As in the single-parameter CMP method, the CRS parameters or attributes are estimated by a direct application of suitable coherence analysis to the input multicoverage data. The estimation of the three CRS parameters is generally performed in two steps. The first step has a global character and aims in obtaining an initial estimate of the parameters. The second step has a local character, trying to refine the previous initial values to more accurate values. Here we focus on the refinement step assuming that initial estimates have been already provided. We review and compare three of these methods and compare their performances on illustrative synthetic and real data examples. Comparisons with the application of the conventional CMP method are also provided. |
id |
SBG-3_7a75e2d3605f67e07863150145e95d97 |
---|---|
oai_identifier_str |
oai:scielo:S0102-261X2003000300007 |
network_acronym_str |
SBG-3 |
network_name_str |
Revista Brasileira de Geofísica (Online) |
repository_id_str |
|
spelling |
Refinement step for parameter estimation in the CRS methodCRSOptimizationStackingThe Common Reflection Surface (CRS) method is a powerful extension of the well established Common Midpoint (CMP) method in the sense that it is able to accept, at each trace location on the zero-offset (ZO) section to be constructed, reflection data from source and receiver pairs that are arbitrarily located around that point. The CRS method uses the general hyperbolic moveout, that depends, in the 2D situation considered in this work, on three parameters. One of these parameters is the classical NMO velocity. As in the single-parameter CMP method, the CRS parameters or attributes are estimated by a direct application of suitable coherence analysis to the input multicoverage data. The estimation of the three CRS parameters is generally performed in two steps. The first step has a global character and aims in obtaining an initial estimate of the parameters. The second step has a local character, trying to refine the previous initial values to more accurate values. Here we focus on the refinement step assuming that initial estimates have been already provided. We review and compare three of these methods and compare their performances on illustrative synthetic and real data examples. Comparisons with the application of the conventional CMP method are also provided.Sociedade Brasileira de Geofísica2003-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2003000300007Revista Brasileira de Geofísica v.21 n.3 2003reponame:Revista Brasileira de Geofísica (Online)instname:Sociedade Brasileira de Geofísica (SBG)instacron:SBG10.1590/S0102-261X2003000300007info:eu-repo/semantics/openAccessMajana,FaridMascarenhas,WalterTygel,MartinSantos,Lúcio Teng2007-01-24T00:00:00Zoai:scielo:S0102-261X2003000300007Revistahttp://www.scielo.br/rbgONGhttps://old.scielo.br/oai/scielo-oai.php||sbgf@sbgf.org.br1809-45110102-261Xopendoar:2007-01-24T00:00Revista Brasileira de Geofísica (Online) - Sociedade Brasileira de Geofísica (SBG)false |
dc.title.none.fl_str_mv |
Refinement step for parameter estimation in the CRS method |
title |
Refinement step for parameter estimation in the CRS method |
spellingShingle |
Refinement step for parameter estimation in the CRS method Majana,Farid CRS Optimization Stacking |
title_short |
Refinement step for parameter estimation in the CRS method |
title_full |
Refinement step for parameter estimation in the CRS method |
title_fullStr |
Refinement step for parameter estimation in the CRS method |
title_full_unstemmed |
Refinement step for parameter estimation in the CRS method |
title_sort |
Refinement step for parameter estimation in the CRS method |
author |
Majana,Farid |
author_facet |
Majana,Farid Mascarenhas,Walter Tygel,Martin Santos,Lúcio T |
author_role |
author |
author2 |
Mascarenhas,Walter Tygel,Martin Santos,Lúcio T |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Majana,Farid Mascarenhas,Walter Tygel,Martin Santos,Lúcio T |
dc.subject.por.fl_str_mv |
CRS Optimization Stacking |
topic |
CRS Optimization Stacking |
description |
The Common Reflection Surface (CRS) method is a powerful extension of the well established Common Midpoint (CMP) method in the sense that it is able to accept, at each trace location on the zero-offset (ZO) section to be constructed, reflection data from source and receiver pairs that are arbitrarily located around that point. The CRS method uses the general hyperbolic moveout, that depends, in the 2D situation considered in this work, on three parameters. One of these parameters is the classical NMO velocity. As in the single-parameter CMP method, the CRS parameters or attributes are estimated by a direct application of suitable coherence analysis to the input multicoverage data. The estimation of the three CRS parameters is generally performed in two steps. The first step has a global character and aims in obtaining an initial estimate of the parameters. The second step has a local character, trying to refine the previous initial values to more accurate values. Here we focus on the refinement step assuming that initial estimates have been already provided. We review and compare three of these methods and compare their performances on illustrative synthetic and real data examples. Comparisons with the application of the conventional CMP method are also provided. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2003000300007 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-261X2003000300007 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0102-261X2003000300007 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Geofísica |
publisher.none.fl_str_mv |
Sociedade Brasileira de Geofísica |
dc.source.none.fl_str_mv |
Revista Brasileira de Geofísica v.21 n.3 2003 reponame:Revista Brasileira de Geofísica (Online) instname:Sociedade Brasileira de Geofísica (SBG) instacron:SBG |
instname_str |
Sociedade Brasileira de Geofísica (SBG) |
instacron_str |
SBG |
institution |
SBG |
reponame_str |
Revista Brasileira de Geofísica (Online) |
collection |
Revista Brasileira de Geofísica (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Geofísica (Online) - Sociedade Brasileira de Geofísica (SBG) |
repository.mail.fl_str_mv |
||sbgf@sbgf.org.br |
_version_ |
1754820936344797184 |