Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol

Detalhes bibliográficos
Autor(a) principal: Teixeira,K. I. R.
Data de Publicação: 2012
Outros Autores: Araújo,P. V., Sinisterra,R. D., Cortés,M. E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Microbiology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822012000200047
Resumo: Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans (C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 µg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 × 10³; 1.4 × 10³; 3.45 × 10³, and 3.74 × 10³ CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding.
id SBM-1_92168ef7c8f02d5a38004f5917c57cf8
oai_identifier_str oai:scielo:S1517-83822012000200047
network_acronym_str SBM-1
network_name_str Brazilian Journal of Microbiology
repository_id_str
spelling Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterolChlorhexidineβ-cyclodextrinmembrane-drug interactionsChlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans (C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 µg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 × 10³; 1.4 × 10³; 3.45 × 10³, and 3.74 × 10³ CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding.Sociedade Brasileira de Microbiologia2012-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822012000200047Brazilian Journal of Microbiology v.43 n.2 2012reponame:Brazilian Journal of Microbiologyinstname:Sociedade Brasileira de Microbiologia (SBM)instacron:SBM10.1590/S1517-83822012000200047info:eu-repo/semantics/openAccessTeixeira,K. I. R.Araújo,P. V.Sinisterra,R. D.Cortés,M. E.eng2012-08-07T00:00:00Zoai:scielo:S1517-83822012000200047Revistahttps://www.scielo.br/j/bjm/ONGhttps://old.scielo.br/oai/scielo-oai.phpbjm@sbmicrobiologia.org.br||mbmartin@usp.br1678-44051517-8382opendoar:2012-08-07T00:00Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)false
dc.title.none.fl_str_mv Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol
title Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol
spellingShingle Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol
Teixeira,K. I. R.
Chlorhexidine
β-cyclodextrin
membrane-drug interactions
title_short Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol
title_full Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol
title_fullStr Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol
title_full_unstemmed Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol
title_sort Chlorhexidine: beta-cyclodextrin inhibits yeast growth by extraction of ergosterol
author Teixeira,K. I. R.
author_facet Teixeira,K. I. R.
Araújo,P. V.
Sinisterra,R. D.
Cortés,M. E.
author_role author
author2 Araújo,P. V.
Sinisterra,R. D.
Cortés,M. E.
author2_role author
author
author
dc.contributor.author.fl_str_mv Teixeira,K. I. R.
Araújo,P. V.
Sinisterra,R. D.
Cortés,M. E.
dc.subject.por.fl_str_mv Chlorhexidine
β-cyclodextrin
membrane-drug interactions
topic Chlorhexidine
β-cyclodextrin
membrane-drug interactions
description Chlorhexidine (Cx) augmented with beta-cyclodextrin (β-cd) inclusion compounds, termed Cx:β-cd complexes, have been developed for use as antiseptic agents. The aim of this study was to examine the interactions of Cx:β-cd complexes, prepared at different molecular ratios, with sterol and yeast membranes. The Minimal Inhibitory Concentration (MIC) against the yeast Candida albicans (C.a.) was determined for each complex; the MICs were found to range from 0.5 to 2 µg/mL. To confirm the MIC data, quantitative analysis of viable cells was performed using trypan blue staining. Mechanistic characterization of the interactions that the Cx:β-cd complexes have with the yeast membrane and assessment of membrane morphology following exposure to Cx:β-cd complexes were performed using Sterol Quantification Method analysis (SQM) and scanning electron microscopy (SEM). SQM revealed that sterol extraction increased with increasing β-cd concentrations (1.71 × 10³; 1.4 × 10³; 3.45 × 10³, and 3.74 × 10³ CFU for 1:1, 1:2, 1:3, and 1:4, respectively), likely as a consequence of membrane ergosterol solubilization. SEM images demonstrated that cell membrane damage is a visible and significant mechanism that contributes to the antimicrobial effects of Cx:β-cd complexes. Cell disorganization increased significantly as the proportion of β-cyclodextrin present in the complex increased. Morphology of cells exposed to complexes with 1:3 and 1:4 molar ratios of Cx:β-cd were observed to have large aggregates mixed with yeast remains, representing more membrane disruption than that observed in cells treated with Cx alone. In conclusion, nanoaggregates of Cx:β-cd complexes block yeast growth via ergosterol extraction, permeabilizing the membrane by creating cluster-like structures within the cell membrane, possibly due to high amounts of hydrogen bonding.
publishDate 2012
dc.date.none.fl_str_mv 2012-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822012000200047
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822012000200047
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1517-83822012000200047
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
publisher.none.fl_str_mv Sociedade Brasileira de Microbiologia
dc.source.none.fl_str_mv Brazilian Journal of Microbiology v.43 n.2 2012
reponame:Brazilian Journal of Microbiology
instname:Sociedade Brasileira de Microbiologia (SBM)
instacron:SBM
instname_str Sociedade Brasileira de Microbiologia (SBM)
instacron_str SBM
institution SBM
reponame_str Brazilian Journal of Microbiology
collection Brazilian Journal of Microbiology
repository.name.fl_str_mv Brazilian Journal of Microbiology - Sociedade Brasileira de Microbiologia (SBM)
repository.mail.fl_str_mv bjm@sbmicrobiologia.org.br||mbmartin@usp.br
_version_ 1752122204662792192