Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100083 |
Resumo: | ABSTRACT In this work, we consider a initial-value problem for an doubly nonlinear advection-diffusion equation, and we present a critical value of κ up to wich the initial-value problem has global solution independent of the initial data u 0, and from which global solutions may still exists, but from initial data u 0 satisfying certain conditions. For this, we suppose that the function <mml:math><mml:mi mathvariant="bold-italic">f</mml:mi> <mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo> <mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>u</mml:mi> <mml:mo>)</mml:mo></mml:math> in the advection term, writted in the divergent form, satisfies certain conditions about your variation in ℝ n , and we also use the decrease of the norm L 1 ( ℝ n ) and an control for the norm L ∞ ( ℝ n ) of solution u ( · , t ). |
id |
SBMAC-1_1fc4157cec94fd09efdae3973a0e6229 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512020000100083 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equationsdoubly nonlinear parabolic equationglobal solutionsconditions for global solutionsABSTRACT In this work, we consider a initial-value problem for an doubly nonlinear advection-diffusion equation, and we present a critical value of κ up to wich the initial-value problem has global solution independent of the initial data u 0, and from which global solutions may still exists, but from initial data u 0 satisfying certain conditions. For this, we suppose that the function <mml:math><mml:mi mathvariant="bold-italic">f</mml:mi> <mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo> <mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>u</mml:mi> <mml:mo>)</mml:mo></mml:math> in the advection term, writted in the divergent form, satisfies certain conditions about your variation in ℝ n , and we also use the decrease of the norm L 1 ( ℝ n ) and an control for the norm L ∞ ( ℝ n ) of solution u ( · , t ).Sociedade Brasileira de Matemática Aplicada e Computacional2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100083TEMA (São Carlos) v.21 n.1 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.01.0083info:eu-repo/semantics/openAccessCHAGAS,J.Q.GUIDOLIN,P.L.ZINGANO,P.R.eng2020-04-28T00:00:00Zoai:scielo:S2179-84512020000100083Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-04-28T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equations |
title |
Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equations |
spellingShingle |
Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equations CHAGAS,J.Q. doubly nonlinear parabolic equation global solutions conditions for global solutions |
title_short |
Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equations |
title_full |
Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equations |
title_fullStr |
Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equations |
title_full_unstemmed |
Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equations |
title_sort |
Conditions for the Existence of Global Solutions to Doubly Nonlinear Advection-diffusion Equations |
author |
CHAGAS,J.Q. |
author_facet |
CHAGAS,J.Q. GUIDOLIN,P.L. ZINGANO,P.R. |
author_role |
author |
author2 |
GUIDOLIN,P.L. ZINGANO,P.R. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
CHAGAS,J.Q. GUIDOLIN,P.L. ZINGANO,P.R. |
dc.subject.por.fl_str_mv |
doubly nonlinear parabolic equation global solutions conditions for global solutions |
topic |
doubly nonlinear parabolic equation global solutions conditions for global solutions |
description |
ABSTRACT In this work, we consider a initial-value problem for an doubly nonlinear advection-diffusion equation, and we present a critical value of κ up to wich the initial-value problem has global solution independent of the initial data u 0, and from which global solutions may still exists, but from initial data u 0 satisfying certain conditions. For this, we suppose that the function <mml:math><mml:mi mathvariant="bold-italic">f</mml:mi> <mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo> <mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>u</mml:mi> <mml:mo>)</mml:mo></mml:math> in the advection term, writted in the divergent form, satisfies certain conditions about your variation in ℝ n , and we also use the decrease of the norm L 1 ( ℝ n ) and an control for the norm L ∞ ( ℝ n ) of solution u ( · , t ). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100083 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100083 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2020.021.01.0083 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.21 n.1 2020 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220637847552 |