A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equations

Detalhes bibliográficos
Autor(a) principal: JAFELICE,R.M.
Data de Publicação: 2015
Outros Autores: BERTONE,A.M., BASSANEZI,R.C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100051
Resumo: This study presents the Verhulst's model for the analysis of population growth with the rate of reproductivity depending on the fertility rate and the country economic development. These linguistic variables are defined through Fuzzy Rule-Based Systems (FRBS). The analysis is made for FRBS types 1 and 2 where in the first case, the inference method used is Mamdani's and the defuzzification is the center of gravity. For type-2 FRBS is used as input variables interval type-2 fuzzy sets, and as output intervals. The output is defuzzificated by the Type Reducer method that use the algorithm of Karnik-Mendel (KM). The aim of this study is to compare the solutions of the Verhulst's model where the parameter, rate of reproductivity, is determined through the type-1 and type-2 FRBS. The comparison is made computing the region built from the solutions corresponding to the minimum and maximum rate. It has been noticed that the region corresponding to type-2 FRBS is contained in the region built similarly from type-1 FRBS, showing a higher accuracy in the response [1], [2], [4].
id SBMAC-1_289dcf7426cac8520bb2820aff4fa6e1
oai_identifier_str oai:scielo:S2179-84512015000100051
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equationsfuzzy setsfuzzy rule-based systemsordinary differential equationsThis study presents the Verhulst's model for the analysis of population growth with the rate of reproductivity depending on the fertility rate and the country economic development. These linguistic variables are defined through Fuzzy Rule-Based Systems (FRBS). The analysis is made for FRBS types 1 and 2 where in the first case, the inference method used is Mamdani's and the defuzzification is the center of gravity. For type-2 FRBS is used as input variables interval type-2 fuzzy sets, and as output intervals. The output is defuzzificated by the Type Reducer method that use the algorithm of Karnik-Mendel (KM). The aim of this study is to compare the solutions of the Verhulst's model where the parameter, rate of reproductivity, is determined through the type-1 and type-2 FRBS. The comparison is made computing the region built from the solutions corresponding to the minimum and maximum rate. It has been noticed that the region corresponding to type-2 FRBS is contained in the region built similarly from type-1 FRBS, showing a higher accuracy in the response [1], [2], [4].Sociedade Brasileira de Matemática Aplicada e Computacional2015-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100051TEMA (São Carlos) v.16 n.1 2015reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2015.016.01.0051info:eu-repo/semantics/openAccessJAFELICE,R.M.BERTONE,A.M.BASSANEZI,R.C.eng2015-05-12T00:00:00Zoai:scielo:S2179-84512015000100051Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2015-05-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equations
title A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equations
spellingShingle A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equations
JAFELICE,R.M.
fuzzy sets
fuzzy rule-based systems
ordinary differential equations
title_short A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equations
title_full A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equations
title_fullStr A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equations
title_full_unstemmed A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equations
title_sort A Study on Subjectivities of Type 1 and 2 in Parameters of Differential Equations
author JAFELICE,R.M.
author_facet JAFELICE,R.M.
BERTONE,A.M.
BASSANEZI,R.C.
author_role author
author2 BERTONE,A.M.
BASSANEZI,R.C.
author2_role author
author
dc.contributor.author.fl_str_mv JAFELICE,R.M.
BERTONE,A.M.
BASSANEZI,R.C.
dc.subject.por.fl_str_mv fuzzy sets
fuzzy rule-based systems
ordinary differential equations
topic fuzzy sets
fuzzy rule-based systems
ordinary differential equations
description This study presents the Verhulst's model for the analysis of population growth with the rate of reproductivity depending on the fertility rate and the country economic development. These linguistic variables are defined through Fuzzy Rule-Based Systems (FRBS). The analysis is made for FRBS types 1 and 2 where in the first case, the inference method used is Mamdani's and the defuzzification is the center of gravity. For type-2 FRBS is used as input variables interval type-2 fuzzy sets, and as output intervals. The output is defuzzificated by the Type Reducer method that use the algorithm of Karnik-Mendel (KM). The aim of this study is to compare the solutions of the Verhulst's model where the parameter, rate of reproductivity, is determined through the type-1 and type-2 FRBS. The comparison is made computing the region built from the solutions corresponding to the minimum and maximum rate. It has been noticed that the region corresponding to type-2 FRBS is contained in the region built similarly from type-1 FRBS, showing a higher accuracy in the response [1], [2], [4].
publishDate 2015
dc.date.none.fl_str_mv 2015-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100051
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000100051
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2015.016.01.0051
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.16 n.1 2015
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220097830912