Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spaces
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300403 |
Resumo: | ABSTRACT In this work we consider the general functional-integral equation: y ( t ) = f ( t , ∫ 0 1 k ( t , s ) g ( s , y ( s ) ) d s ) , t ∈ [ 0 , 1 ] , and give conditions that guarantee existence and uniqueness of solution in L p ( [ 0 , 1 ] ), with 1 1 p ∞.We use Banach Fixed Point Theorem and employ the successive approximation method and Chebyshev quadrature for approximating the values of integrals. Finally, to illustrate the results of this work, we provide some numerical examples. |
id |
SBMAC-1_3bde895cdeb2b2c0c66926f90e981067 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512019000300403 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spacesfunctional-integral equationsLp spacesexistenceuniquenesssuccessive approximationABSTRACT In this work we consider the general functional-integral equation: y ( t ) = f ( t , ∫ 0 1 k ( t , s ) g ( s , y ( s ) ) d s ) , t ∈ [ 0 , 1 ] , and give conditions that guarantee existence and uniqueness of solution in L p ( [ 0 , 1 ] ), with 1 1 p ∞.We use Banach Fixed Point Theorem and employ the successive approximation method and Chebyshev quadrature for approximating the values of integrals. Finally, to illustrate the results of this work, we provide some numerical examples.Sociedade Brasileira de Matemática Aplicada e Computacional2019-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300403TEMA (São Carlos) v.20 n.3 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.03.0403info:eu-repo/semantics/openAccessAFONSO,S. M.AZEVEDO,J. S.DA SILVA,M. P. G.ROCHA,A. M.eng2019-12-12T00:00:00Zoai:scielo:S2179-84512019000300403Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-12-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spaces |
title |
Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spaces |
spellingShingle |
Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spaces AFONSO,S. M. functional-integral equations Lp spaces existence uniqueness successive approximation |
title_short |
Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spaces |
title_full |
Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spaces |
title_fullStr |
Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spaces |
title_full_unstemmed |
Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spaces |
title_sort |
Existence, Uniqueness, and Approximation for Solutions of a Functional-integral Equation in L p Spaces |
author |
AFONSO,S. M. |
author_facet |
AFONSO,S. M. AZEVEDO,J. S. DA SILVA,M. P. G. ROCHA,A. M. |
author_role |
author |
author2 |
AZEVEDO,J. S. DA SILVA,M. P. G. ROCHA,A. M. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
AFONSO,S. M. AZEVEDO,J. S. DA SILVA,M. P. G. ROCHA,A. M. |
dc.subject.por.fl_str_mv |
functional-integral equations Lp spaces existence uniqueness successive approximation |
topic |
functional-integral equations Lp spaces existence uniqueness successive approximation |
description |
ABSTRACT In this work we consider the general functional-integral equation: y ( t ) = f ( t , ∫ 0 1 k ( t , s ) g ( s , y ( s ) ) d s ) , t ∈ [ 0 , 1 ] , and give conditions that guarantee existence and uniqueness of solution in L p ( [ 0 , 1 ] ), with 1 1 p ∞.We use Banach Fixed Point Theorem and employ the successive approximation method and Chebyshev quadrature for approximating the values of integrals. Finally, to illustrate the results of this work, we provide some numerical examples. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300403 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000300403 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2019.020.03.0403 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.20 n.3 2019 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220618973184 |