Closed-Form Solution for the Solow Model with Constant Migration
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200147 |
Resumo: | In this work we deal with the Solow economic growth model, when the labor force is ruled by the Malthusian law added by a constant migration rate. Considering a Cobb-Douglas production function, we prove some stability issues and find a closed-form solution for the emigration case, involving Gauss' Hypergeometric functions. In addition, we prove that, depending on the value of the emigration rate, the economy could collapse, stabilize at a constant level, or grow more slowly than the standard Solow model. Immigration also can be analyzed by the model if the Malthusian manpower is declining. |
id |
SBMAC-1_3be4fc7d0cb2a61d17e6474c54d84b66 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512015000200147 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Closed-Form Solution for the Solow Model with Constant MigrationSolow growth modelmigrationhypergeometric functionIn this work we deal with the Solow economic growth model, when the labor force is ruled by the Malthusian law added by a constant migration rate. Considering a Cobb-Douglas production function, we prove some stability issues and find a closed-form solution for the emigration case, involving Gauss' Hypergeometric functions. In addition, we prove that, depending on the value of the emigration rate, the economy could collapse, stabilize at a constant level, or grow more slowly than the standard Solow model. Immigration also can be analyzed by the model if the Malthusian manpower is declining.Sociedade Brasileira de Matemática Aplicada e Computacional2015-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200147TEMA (São Carlos) v.16 n.2 2015reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2015.016.02.0147info:eu-repo/semantics/openAccessJUCHEM NETO,J.P.CLAEYSSEN,J.C.R.RITELLI,D.SCARPELLO,G. MINGARIeng2015-09-15T00:00:00Zoai:scielo:S2179-84512015000200147Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2015-09-15T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Closed-Form Solution for the Solow Model with Constant Migration |
title |
Closed-Form Solution for the Solow Model with Constant Migration |
spellingShingle |
Closed-Form Solution for the Solow Model with Constant Migration JUCHEM NETO,J.P. Solow growth model migration hypergeometric function |
title_short |
Closed-Form Solution for the Solow Model with Constant Migration |
title_full |
Closed-Form Solution for the Solow Model with Constant Migration |
title_fullStr |
Closed-Form Solution for the Solow Model with Constant Migration |
title_full_unstemmed |
Closed-Form Solution for the Solow Model with Constant Migration |
title_sort |
Closed-Form Solution for the Solow Model with Constant Migration |
author |
JUCHEM NETO,J.P. |
author_facet |
JUCHEM NETO,J.P. CLAEYSSEN,J.C.R. RITELLI,D. SCARPELLO,G. MINGARI |
author_role |
author |
author2 |
CLAEYSSEN,J.C.R. RITELLI,D. SCARPELLO,G. MINGARI |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
JUCHEM NETO,J.P. CLAEYSSEN,J.C.R. RITELLI,D. SCARPELLO,G. MINGARI |
dc.subject.por.fl_str_mv |
Solow growth model migration hypergeometric function |
topic |
Solow growth model migration hypergeometric function |
description |
In this work we deal with the Solow economic growth model, when the labor force is ruled by the Malthusian law added by a constant migration rate. Considering a Cobb-Douglas production function, we prove some stability issues and find a closed-form solution for the emigration case, involving Gauss' Hypergeometric functions. In addition, we prove that, depending on the value of the emigration rate, the economy could collapse, stabilize at a constant level, or grow more slowly than the standard Solow model. Immigration also can be analyzed by the model if the Malthusian manpower is declining. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200147 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200147 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2015.016.02.0147 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.16 n.2 2015 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220118802432 |