Closed-Form Solution for the Solow Model with Constant Migration

Detalhes bibliográficos
Autor(a) principal: JUCHEM NETO,J.P.
Data de Publicação: 2015
Outros Autores: CLAEYSSEN,J.C.R., RITELLI,D., SCARPELLO,G. MINGARI
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200147
Resumo: In this work we deal with the Solow economic growth model, when the labor force is ruled by the Malthusian law added by a constant migration rate. Considering a Cobb-Douglas production function, we prove some stability issues and find a closed-form solution for the emigration case, involving Gauss' Hypergeometric functions. In addition, we prove that, depending on the value of the emigration rate, the economy could collapse, stabilize at a constant level, or grow more slowly than the standard Solow model. Immigration also can be analyzed by the model if the Malthusian manpower is declining.
id SBMAC-1_3be4fc7d0cb2a61d17e6474c54d84b66
oai_identifier_str oai:scielo:S2179-84512015000200147
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Closed-Form Solution for the Solow Model with Constant MigrationSolow growth modelmigrationhypergeometric functionIn this work we deal with the Solow economic growth model, when the labor force is ruled by the Malthusian law added by a constant migration rate. Considering a Cobb-Douglas production function, we prove some stability issues and find a closed-form solution for the emigration case, involving Gauss' Hypergeometric functions. In addition, we prove that, depending on the value of the emigration rate, the economy could collapse, stabilize at a constant level, or grow more slowly than the standard Solow model. Immigration also can be analyzed by the model if the Malthusian manpower is declining.Sociedade Brasileira de Matemática Aplicada e Computacional2015-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200147TEMA (São Carlos) v.16 n.2 2015reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2015.016.02.0147info:eu-repo/semantics/openAccessJUCHEM NETO,J.P.CLAEYSSEN,J.C.R.RITELLI,D.SCARPELLO,G. MINGARIeng2015-09-15T00:00:00Zoai:scielo:S2179-84512015000200147Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2015-09-15T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Closed-Form Solution for the Solow Model with Constant Migration
title Closed-Form Solution for the Solow Model with Constant Migration
spellingShingle Closed-Form Solution for the Solow Model with Constant Migration
JUCHEM NETO,J.P.
Solow growth model
migration
hypergeometric function
title_short Closed-Form Solution for the Solow Model with Constant Migration
title_full Closed-Form Solution for the Solow Model with Constant Migration
title_fullStr Closed-Form Solution for the Solow Model with Constant Migration
title_full_unstemmed Closed-Form Solution for the Solow Model with Constant Migration
title_sort Closed-Form Solution for the Solow Model with Constant Migration
author JUCHEM NETO,J.P.
author_facet JUCHEM NETO,J.P.
CLAEYSSEN,J.C.R.
RITELLI,D.
SCARPELLO,G. MINGARI
author_role author
author2 CLAEYSSEN,J.C.R.
RITELLI,D.
SCARPELLO,G. MINGARI
author2_role author
author
author
dc.contributor.author.fl_str_mv JUCHEM NETO,J.P.
CLAEYSSEN,J.C.R.
RITELLI,D.
SCARPELLO,G. MINGARI
dc.subject.por.fl_str_mv Solow growth model
migration
hypergeometric function
topic Solow growth model
migration
hypergeometric function
description In this work we deal with the Solow economic growth model, when the labor force is ruled by the Malthusian law added by a constant migration rate. Considering a Cobb-Douglas production function, we prove some stability issues and find a closed-form solution for the emigration case, involving Gauss' Hypergeometric functions. In addition, we prove that, depending on the value of the emigration rate, the economy could collapse, stabilize at a constant level, or grow more slowly than the standard Solow model. Immigration also can be analyzed by the model if the Malthusian manpower is declining.
publishDate 2015
dc.date.none.fl_str_mv 2015-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200147
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512015000200147
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2015.016.02.0147
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.16 n.2 2015
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220118802432