Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100021 |
Resumo: | ABSTRACT In this work we study two-phase flow with gravity either in 1-rock homogeneous media or 2-rocks composed media. These phenomena can be modeled by a non-linear scalar conservation law with continuous flux function or discontinuous flux function, respectively. Our study is essentially from a numerical point of view, we apply the new Lagrangian-Eulerian (LEH) finite difference method developed by Abreu and Pérez 1), (2), (3), (4), (5), (25 and the classical Lax-Friedrichs method to obtain numerical entropic solutions. Comparisons between numerical and analytical solutions show the efficiency of the methods even for discontinuous flux function. Our main contribution, is the comparison and error analysis between the new LEH and the classical Lax-Friedrichs (LF) methods, in order to show the good performance of the LEH scheme for models with discontinuous flux functions. |
id |
SBMAC-1_48b77415eb3a8e58a8322db28823d72f |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512020000100021 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Mediaconservation lawsfinite differencesLagrangian-Eulerian approachtwo-phase flowheterogeneous porous mediumABSTRACT In this work we study two-phase flow with gravity either in 1-rock homogeneous media or 2-rocks composed media. These phenomena can be modeled by a non-linear scalar conservation law with continuous flux function or discontinuous flux function, respectively. Our study is essentially from a numerical point of view, we apply the new Lagrangian-Eulerian (LEH) finite difference method developed by Abreu and Pérez 1), (2), (3), (4), (5), (25 and the classical Lax-Friedrichs method to obtain numerical entropic solutions. Comparisons between numerical and analytical solutions show the efficiency of the methods even for discontinuous flux function. Our main contribution, is the comparison and error analysis between the new LEH and the classical Lax-Friedrichs (LF) methods, in order to show the good performance of the LEH scheme for models with discontinuous flux functions.Sociedade Brasileira de Matemática Aplicada e Computacional2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100021TEMA (São Carlos) v.21 n.1 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.01.0021info:eu-repo/semantics/openAccessARAUJO,I. L. N.RODRÍGUEZ-BERMÚDEZ,P.RODRÍGUEZ-NÚÑEZ,Y.eng2020-04-28T00:00:00Zoai:scielo:S2179-84512020000100021Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-04-28T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media |
title |
Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media |
spellingShingle |
Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media ARAUJO,I. L. N. conservation laws finite differences Lagrangian-Eulerian approach two-phase flow heterogeneous porous medium |
title_short |
Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media |
title_full |
Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media |
title_fullStr |
Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media |
title_full_unstemmed |
Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media |
title_sort |
Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media |
author |
ARAUJO,I. L. N. |
author_facet |
ARAUJO,I. L. N. RODRÍGUEZ-BERMÚDEZ,P. RODRÍGUEZ-NÚÑEZ,Y. |
author_role |
author |
author2 |
RODRÍGUEZ-BERMÚDEZ,P. RODRÍGUEZ-NÚÑEZ,Y. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
ARAUJO,I. L. N. RODRÍGUEZ-BERMÚDEZ,P. RODRÍGUEZ-NÚÑEZ,Y. |
dc.subject.por.fl_str_mv |
conservation laws finite differences Lagrangian-Eulerian approach two-phase flow heterogeneous porous medium |
topic |
conservation laws finite differences Lagrangian-Eulerian approach two-phase flow heterogeneous porous medium |
description |
ABSTRACT In this work we study two-phase flow with gravity either in 1-rock homogeneous media or 2-rocks composed media. These phenomena can be modeled by a non-linear scalar conservation law with continuous flux function or discontinuous flux function, respectively. Our study is essentially from a numerical point of view, we apply the new Lagrangian-Eulerian (LEH) finite difference method developed by Abreu and Pérez 1), (2), (3), (4), (5), (25 and the classical Lax-Friedrichs method to obtain numerical entropic solutions. Comparisons between numerical and analytical solutions show the efficiency of the methods even for discontinuous flux function. Our main contribution, is the comparison and error analysis between the new LEH and the classical Lax-Friedrichs (LF) methods, in order to show the good performance of the LEH scheme for models with discontinuous flux functions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100021 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100021 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2020.021.01.0021 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.21 n.1 2020 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220632604672 |