Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media

Detalhes bibliográficos
Autor(a) principal: ARAUJO,I. L. N.
Data de Publicação: 2020
Outros Autores: RODRÍGUEZ-BERMÚDEZ,P., RODRÍGUEZ-NÚÑEZ,Y.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100021
Resumo: ABSTRACT In this work we study two-phase flow with gravity either in 1-rock homogeneous media or 2-rocks composed media. These phenomena can be modeled by a non-linear scalar conservation law with continuous flux function or discontinuous flux function, respectively. Our study is essentially from a numerical point of view, we apply the new Lagrangian-Eulerian (LEH) finite difference method developed by Abreu and Pérez 1), (2), (3), (4), (5), (25 and the classical Lax-Friedrichs method to obtain numerical entropic solutions. Comparisons between numerical and analytical solutions show the efficiency of the methods even for discontinuous flux function. Our main contribution, is the comparison and error analysis between the new LEH and the classical Lax-Friedrichs (LF) methods, in order to show the good performance of the LEH scheme for models with discontinuous flux functions.
id SBMAC-1_48b77415eb3a8e58a8322db28823d72f
oai_identifier_str oai:scielo:S2179-84512020000100021
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Mediaconservation lawsfinite differencesLagrangian-Eulerian approachtwo-phase flowheterogeneous porous mediumABSTRACT In this work we study two-phase flow with gravity either in 1-rock homogeneous media or 2-rocks composed media. These phenomena can be modeled by a non-linear scalar conservation law with continuous flux function or discontinuous flux function, respectively. Our study is essentially from a numerical point of view, we apply the new Lagrangian-Eulerian (LEH) finite difference method developed by Abreu and Pérez 1), (2), (3), (4), (5), (25 and the classical Lax-Friedrichs method to obtain numerical entropic solutions. Comparisons between numerical and analytical solutions show the efficiency of the methods even for discontinuous flux function. Our main contribution, is the comparison and error analysis between the new LEH and the classical Lax-Friedrichs (LF) methods, in order to show the good performance of the LEH scheme for models with discontinuous flux functions.Sociedade Brasileira de Matemática Aplicada e Computacional2020-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100021TEMA (São Carlos) v.21 n.1 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.01.0021info:eu-repo/semantics/openAccessARAUJO,I. L. N.RODRÍGUEZ-BERMÚDEZ,P.RODRÍGUEZ-NÚÑEZ,Y.eng2020-04-28T00:00:00Zoai:scielo:S2179-84512020000100021Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-04-28T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media
title Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media
spellingShingle Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media
ARAUJO,I. L. N.
conservation laws
finite differences
Lagrangian-Eulerian approach
two-phase flow
heterogeneous porous medium
title_short Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media
title_full Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media
title_fullStr Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media
title_full_unstemmed Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media
title_sort Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media
author ARAUJO,I. L. N.
author_facet ARAUJO,I. L. N.
RODRÍGUEZ-BERMÚDEZ,P.
RODRÍGUEZ-NÚÑEZ,Y.
author_role author
author2 RODRÍGUEZ-BERMÚDEZ,P.
RODRÍGUEZ-NÚÑEZ,Y.
author2_role author
author
dc.contributor.author.fl_str_mv ARAUJO,I. L. N.
RODRÍGUEZ-BERMÚDEZ,P.
RODRÍGUEZ-NÚÑEZ,Y.
dc.subject.por.fl_str_mv conservation laws
finite differences
Lagrangian-Eulerian approach
two-phase flow
heterogeneous porous medium
topic conservation laws
finite differences
Lagrangian-Eulerian approach
two-phase flow
heterogeneous porous medium
description ABSTRACT In this work we study two-phase flow with gravity either in 1-rock homogeneous media or 2-rocks composed media. These phenomena can be modeled by a non-linear scalar conservation law with continuous flux function or discontinuous flux function, respectively. Our study is essentially from a numerical point of view, we apply the new Lagrangian-Eulerian (LEH) finite difference method developed by Abreu and Pérez 1), (2), (3), (4), (5), (25 and the classical Lax-Friedrichs method to obtain numerical entropic solutions. Comparisons between numerical and analytical solutions show the efficiency of the methods even for discontinuous flux function. Our main contribution, is the comparison and error analysis between the new LEH and the classical Lax-Friedrichs (LF) methods, in order to show the good performance of the LEH scheme for models with discontinuous flux functions.
publishDate 2020
dc.date.none.fl_str_mv 2020-04-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100021
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000100021
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2020.021.01.0021
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.21 n.1 2020
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220632604672