On the Improvement of Multiple Circles Detection from Images using Hough Transform

Detalhes bibliográficos
Autor(a) principal: BARBOSA,W.O.
Data de Publicação: 2019
Outros Autores: VIEIRA,A.W.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000200331
Resumo: ABSTRACT The automatic detection of lines and curves from color images is a very important task in many applications, such as object recognition and scene reconstruction. Although there are closed formulation for curve fitting to a set of points, if the point set describes more than one instance of the object, as two circles for example, there is no closed formulation for obtaining the individual set of parameters without a priori information of which points belong to each object. However, it is usual the presence of multiple instances of objects such as lines and circles on an image. The well known Hough transform is an efficient tool for recovering multiple objects from images using a voting process where the usual presence of false positives is an issue. In our work, we present an improvement on the voting process to detect multiple circles using Hough transform in order to avoid false positives. Our experiments show that our voting process leads to a more robust detection, reducing the number of false positive and providing a more accurate detection even with large number of circles.
id SBMAC-1_4ad145f36ede92e87698c30fb81f2e78
oai_identifier_str oai:scielo:S2179-84512019000200331
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling On the Improvement of Multiple Circles Detection from Images using Hough Transformcomputer visionhough transformcircle detectionABSTRACT The automatic detection of lines and curves from color images is a very important task in many applications, such as object recognition and scene reconstruction. Although there are closed formulation for curve fitting to a set of points, if the point set describes more than one instance of the object, as two circles for example, there is no closed formulation for obtaining the individual set of parameters without a priori information of which points belong to each object. However, it is usual the presence of multiple instances of objects such as lines and circles on an image. The well known Hough transform is an efficient tool for recovering multiple objects from images using a voting process where the usual presence of false positives is an issue. In our work, we present an improvement on the voting process to detect multiple circles using Hough transform in order to avoid false positives. Our experiments show that our voting process leads to a more robust detection, reducing the number of false positive and providing a more accurate detection even with large number of circles.Sociedade Brasileira de Matemática Aplicada e Computacional2019-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000200331TEMA (São Carlos) v.20 n.2 2019reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2019.020.02.0331info:eu-repo/semantics/openAccessBARBOSA,W.O.VIEIRA,A.W.eng2019-09-12T00:00:00Zoai:scielo:S2179-84512019000200331Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2019-09-12T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv On the Improvement of Multiple Circles Detection from Images using Hough Transform
title On the Improvement of Multiple Circles Detection from Images using Hough Transform
spellingShingle On the Improvement of Multiple Circles Detection from Images using Hough Transform
BARBOSA,W.O.
computer vision
hough transform
circle detection
title_short On the Improvement of Multiple Circles Detection from Images using Hough Transform
title_full On the Improvement of Multiple Circles Detection from Images using Hough Transform
title_fullStr On the Improvement of Multiple Circles Detection from Images using Hough Transform
title_full_unstemmed On the Improvement of Multiple Circles Detection from Images using Hough Transform
title_sort On the Improvement of Multiple Circles Detection from Images using Hough Transform
author BARBOSA,W.O.
author_facet BARBOSA,W.O.
VIEIRA,A.W.
author_role author
author2 VIEIRA,A.W.
author2_role author
dc.contributor.author.fl_str_mv BARBOSA,W.O.
VIEIRA,A.W.
dc.subject.por.fl_str_mv computer vision
hough transform
circle detection
topic computer vision
hough transform
circle detection
description ABSTRACT The automatic detection of lines and curves from color images is a very important task in many applications, such as object recognition and scene reconstruction. Although there are closed formulation for curve fitting to a set of points, if the point set describes more than one instance of the object, as two circles for example, there is no closed formulation for obtaining the individual set of parameters without a priori information of which points belong to each object. However, it is usual the presence of multiple instances of objects such as lines and circles on an image. The well known Hough transform is an efficient tool for recovering multiple objects from images using a voting process where the usual presence of false positives is an issue. In our work, we present an improvement on the voting process to detect multiple circles using Hough transform in order to avoid false positives. Our experiments show that our voting process leads to a more robust detection, reducing the number of false positive and providing a more accurate detection even with large number of circles.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000200331
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512019000200331
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2019.020.02.0331
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.20 n.2 2019
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220584370176