Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512012000200008 |
Resumo: | This article deals with a vector optimization problem with cone constraints in a Banach space setting. By making use of a real-valued Lagrangian and the concept of generalized subconvex-like functions, weakly efficient solutions are characterized through saddle point type conditions. The results, jointly with the notion of generalized Hessian (introduced in [Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28, 789-809 (1990)]), are applied to achieve second order necessary and sufficient optimality conditions (without requiring twice differentiability for the objective and constraining functions) for the particular case when the functionals involved are defined on a general Banach space into finite dimensional ones. |
id |
SBMAC-1_7f665681210737751e5db676cf90341e |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512012000200008 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimizationMultiobjetive optimizationabstract optimization problemsnonlinear programmingsaddle point conditionsgeneralized second order conditionsgeneralized convexityThis article deals with a vector optimization problem with cone constraints in a Banach space setting. By making use of a real-valued Lagrangian and the concept of generalized subconvex-like functions, weakly efficient solutions are characterized through saddle point type conditions. The results, jointly with the notion of generalized Hessian (introduced in [Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28, 789-809 (1990)]), are applied to achieve second order necessary and sufficient optimality conditions (without requiring twice differentiability for the objective and constraining functions) for the particular case when the functionals involved are defined on a general Banach space into finite dimensional ones.Sociedade Brasileira de Matemática Aplicada e Computacional2012-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512012000200008TEMA (São Carlos) v.13 n.2 2012reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2012.013.02.0179info:eu-repo/semantics/openAccessSantos,L.B. dosRojas-Medar,M.A.Oliveira,V.A. deeng2012-10-15T00:00:00Zoai:scielo:S2179-84512012000200008Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2012-10-15T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization |
title |
Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization |
spellingShingle |
Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization Santos,L.B. dos Multiobjetive optimization abstract optimization problems nonlinear programming saddle point conditions generalized second order conditions generalized convexity |
title_short |
Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization |
title_full |
Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization |
title_fullStr |
Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization |
title_full_unstemmed |
Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization |
title_sort |
Saddle point and second order optimality in nondifferentiable nonlinear abstract multiobjective optimization |
author |
Santos,L.B. dos |
author_facet |
Santos,L.B. dos Rojas-Medar,M.A. Oliveira,V.A. de |
author_role |
author |
author2 |
Rojas-Medar,M.A. Oliveira,V.A. de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Santos,L.B. dos Rojas-Medar,M.A. Oliveira,V.A. de |
dc.subject.por.fl_str_mv |
Multiobjetive optimization abstract optimization problems nonlinear programming saddle point conditions generalized second order conditions generalized convexity |
topic |
Multiobjetive optimization abstract optimization problems nonlinear programming saddle point conditions generalized second order conditions generalized convexity |
description |
This article deals with a vector optimization problem with cone constraints in a Banach space setting. By making use of a real-valued Lagrangian and the concept of generalized subconvex-like functions, weakly efficient solutions are characterized through saddle point type conditions. The results, jointly with the notion of generalized Hessian (introduced in [Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28, 789-809 (1990)]), are applied to achieve second order necessary and sufficient optimality conditions (without requiring twice differentiability for the objective and constraining functions) for the particular case when the functionals involved are defined on a general Banach space into finite dimensional ones. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512012000200008 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512012000200008 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2012.013.02.0179 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.13 n.2 2012 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122219731877888 |