Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations

Detalhes bibliográficos
Autor(a) principal: AZEVEDO,J. S.
Data de Publicação: 2020
Outros Autores: AFONSO,S. M., DA SILVA,M. P. G.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000300521
Resumo: ABSTRACT The collocation method based on Chebyshev basis functions, coupled Picard iterative process, is proposed to solve a functional Volterra integral equation of the second kind. Using the Banach Fixed Point Theorem, we prove theorems on the existence and uniqueness solutions in the L 2-norm. We also provide the convergence and stability analysis of the proposed method, which indicates that the numerical errors in the L 2-norm decay exponentially, provided that the kernel function is sufficiently smooth. Numerical results are presented and they confirm the theoretical prediction of the exponential rate of convergence.
id SBMAC-1_8de1bdfdb337b3441870a19e5e073fa4
oai_identifier_str oai:scielo:S2179-84512020000300521
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equationsfunctional Volterra integral equation collocation methodPicard iterationABSTRACT The collocation method based on Chebyshev basis functions, coupled Picard iterative process, is proposed to solve a functional Volterra integral equation of the second kind. Using the Banach Fixed Point Theorem, we prove theorems on the existence and uniqueness solutions in the L 2-norm. We also provide the convergence and stability analysis of the proposed method, which indicates that the numerical errors in the L 2-norm decay exponentially, provided that the kernel function is sufficiently smooth. Numerical results are presented and they confirm the theoretical prediction of the exponential rate of convergence.Sociedade Brasileira de Matemática Aplicada e Computacional2020-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000300521TEMA (São Carlos) v.21 n.3 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.03.0521info:eu-repo/semantics/openAccessAZEVEDO,J. S.AFONSO,S. M.DA SILVA,M. P. G.eng2020-11-27T00:00:00Zoai:scielo:S2179-84512020000300521Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-11-27T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
title Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
spellingShingle Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
AZEVEDO,J. S.
functional Volterra integral equation collocation method
Picard iteration
title_short Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
title_full Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
title_fullStr Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
title_full_unstemmed Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
title_sort Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
author AZEVEDO,J. S.
author_facet AZEVEDO,J. S.
AFONSO,S. M.
DA SILVA,M. P. G.
author_role author
author2 AFONSO,S. M.
DA SILVA,M. P. G.
author2_role author
author
dc.contributor.author.fl_str_mv AZEVEDO,J. S.
AFONSO,S. M.
DA SILVA,M. P. G.
dc.subject.por.fl_str_mv functional Volterra integral equation collocation method
Picard iteration
topic functional Volterra integral equation collocation method
Picard iteration
description ABSTRACT The collocation method based on Chebyshev basis functions, coupled Picard iterative process, is proposed to solve a functional Volterra integral equation of the second kind. Using the Banach Fixed Point Theorem, we prove theorems on the existence and uniqueness solutions in the L 2-norm. We also provide the convergence and stability analysis of the proposed method, which indicates that the numerical errors in the L 2-norm decay exponentially, provided that the kernel function is sufficiently smooth. Numerical results are presented and they confirm the theoretical prediction of the exponential rate of convergence.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000300521
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000300521
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2020.021.03.0521
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.21 n.3 2020
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220696567808