Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000300521 |
Resumo: | ABSTRACT The collocation method based on Chebyshev basis functions, coupled Picard iterative process, is proposed to solve a functional Volterra integral equation of the second kind. Using the Banach Fixed Point Theorem, we prove theorems on the existence and uniqueness solutions in the L 2-norm. We also provide the convergence and stability analysis of the proposed method, which indicates that the numerical errors in the L 2-norm decay exponentially, provided that the kernel function is sufficiently smooth. Numerical results are presented and they confirm the theoretical prediction of the exponential rate of convergence. |
id |
SBMAC-1_8de1bdfdb337b3441870a19e5e073fa4 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512020000300521 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equationsfunctional Volterra integral equation collocation methodPicard iterationABSTRACT The collocation method based on Chebyshev basis functions, coupled Picard iterative process, is proposed to solve a functional Volterra integral equation of the second kind. Using the Banach Fixed Point Theorem, we prove theorems on the existence and uniqueness solutions in the L 2-norm. We also provide the convergence and stability analysis of the proposed method, which indicates that the numerical errors in the L 2-norm decay exponentially, provided that the kernel function is sufficiently smooth. Numerical results are presented and they confirm the theoretical prediction of the exponential rate of convergence.Sociedade Brasileira de Matemática Aplicada e Computacional2020-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000300521TEMA (São Carlos) v.21 n.3 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.03.0521info:eu-repo/semantics/openAccessAZEVEDO,J. S.AFONSO,S. M.DA SILVA,M. P. G.eng2020-11-27T00:00:00Zoai:scielo:S2179-84512020000300521Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-11-27T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations |
title |
Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations |
spellingShingle |
Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations AZEVEDO,J. S. functional Volterra integral equation collocation method Picard iteration |
title_short |
Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations |
title_full |
Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations |
title_fullStr |
Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations |
title_full_unstemmed |
Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations |
title_sort |
Numerical Analysis of the Chebyshev Collocation Method for Functional Volterra Integral Equations |
author |
AZEVEDO,J. S. |
author_facet |
AZEVEDO,J. S. AFONSO,S. M. DA SILVA,M. P. G. |
author_role |
author |
author2 |
AFONSO,S. M. DA SILVA,M. P. G. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
AZEVEDO,J. S. AFONSO,S. M. DA SILVA,M. P. G. |
dc.subject.por.fl_str_mv |
functional Volterra integral equation collocation method Picard iteration |
topic |
functional Volterra integral equation collocation method Picard iteration |
description |
ABSTRACT The collocation method based on Chebyshev basis functions, coupled Picard iterative process, is proposed to solve a functional Volterra integral equation of the second kind. Using the Banach Fixed Point Theorem, we prove theorems on the existence and uniqueness solutions in the L 2-norm. We also provide the convergence and stability analysis of the proposed method, which indicates that the numerical errors in the L 2-norm decay exponentially, provided that the kernel function is sufficiently smooth. Numerical results are presented and they confirm the theoretical prediction of the exponential rate of convergence. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000300521 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000300521 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2020.021.03.0521 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.21 n.3 2020 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220696567808 |