Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applications

Detalhes bibliográficos
Autor(a) principal: BAKOUCH,H.S.
Data de Publicação: 2017
Outros Autores: DEY,S., RAMOS,P.L., LOUZADA,F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200233
Resumo: ABSTRACT In this paper, we have considered different estimation methods of the unknown parameters of a binomial-exponential 2 distribution. First, we briefly describe different methods of estimation such as maximum likelihood, method of moments, percentile based estimation, least squares, method of maximum product of spacings, method of Cramér-von-Mises, methods of Anderson-Darling and right-tail Anderson-Darling, and compare them using extensive simulations studies. Finally, the potentiality of the model is studied using three real data sets related to the total monthly rainfall during April, May and September at São Carlos, Brazil.
id SBMAC-1_916cd957d5eed6b9eaf416ebd309f5c4
oai_identifier_str oai:scielo:S2179-84512017000200233
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applicationsbinomial-exponential 2maximum likelihood estimationCramér-von-Mises type minimum distance estimatorsright-tail Anderson-Darling estimatorsABSTRACT In this paper, we have considered different estimation methods of the unknown parameters of a binomial-exponential 2 distribution. First, we briefly describe different methods of estimation such as maximum likelihood, method of moments, percentile based estimation, least squares, method of maximum product of spacings, method of Cramér-von-Mises, methods of Anderson-Darling and right-tail Anderson-Darling, and compare them using extensive simulations studies. Finally, the potentiality of the model is studied using three real data sets related to the total monthly rainfall during April, May and September at São Carlos, Brazil.Sociedade Brasileira de Matemática Aplicada e Computacional2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200233TEMA (São Carlos) v.18 n.2 2017reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2017.018.02.0233info:eu-repo/semantics/openAccessBAKOUCH,H.S.DEY,S.RAMOS,P.L.LOUZADA,F.eng2017-09-14T00:00:00Zoai:scielo:S2179-84512017000200233Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2017-09-14T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applications
title Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applications
spellingShingle Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applications
BAKOUCH,H.S.
binomial-exponential 2
maximum likelihood estimation
Cramér-von-Mises type minimum distance estimators
right-tail Anderson-Darling estimators
title_short Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applications
title_full Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applications
title_fullStr Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applications
title_full_unstemmed Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applications
title_sort Binomial-exponential 2 Distribution: Different Estimation Methods with Weather Applications
author BAKOUCH,H.S.
author_facet BAKOUCH,H.S.
DEY,S.
RAMOS,P.L.
LOUZADA,F.
author_role author
author2 DEY,S.
RAMOS,P.L.
LOUZADA,F.
author2_role author
author
author
dc.contributor.author.fl_str_mv BAKOUCH,H.S.
DEY,S.
RAMOS,P.L.
LOUZADA,F.
dc.subject.por.fl_str_mv binomial-exponential 2
maximum likelihood estimation
Cramér-von-Mises type minimum distance estimators
right-tail Anderson-Darling estimators
topic binomial-exponential 2
maximum likelihood estimation
Cramér-von-Mises type minimum distance estimators
right-tail Anderson-Darling estimators
description ABSTRACT In this paper, we have considered different estimation methods of the unknown parameters of a binomial-exponential 2 distribution. First, we briefly describe different methods of estimation such as maximum likelihood, method of moments, percentile based estimation, least squares, method of maximum product of spacings, method of Cramér-von-Mises, methods of Anderson-Darling and right-tail Anderson-Darling, and compare them using extensive simulations studies. Finally, the potentiality of the model is studied using three real data sets related to the total monthly rainfall during April, May and September at São Carlos, Brazil.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200233
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512017000200233
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2017.018.02.0233
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.18 n.2 2017
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220215271424