Statistical properties and different methods of estimation of Gompertz distribution with application
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1080/09720510.2018.1450197 http://hdl.handle.net/11449/160483 |
Resumo: | This article addresses the various properties and different methods of estimation of the unknown parameters of Gompertz distribution. Although, our main focus is on estimation from both frequentist and Bayesian point of view, yet, various mathematical and statistical properties of the Gompertz distribution (such as quantiles, moments, moment generating function, hazard rate, mean residual lifetime, mean past lifetime, stochasic ordering, stress-strength parameter, various entropies, Bonferroni and Lorenz curves and order statistics) are derived. We briefly describe different frequentist approaches, namely, maximum likelihood estimators, moments estimators, pseudo-moments estimators, modified moments estimators, L-moment estimators, percentile based estimators, least squares and weighted least squares estimators, maximum product of spacings estimators, minimum spacing absolute distance estimators, minimum spacing absolute-log distance estimator, Cramer-von-Mises estimators, Anderson-Darling and right-tail Anderson-Darling and compare them using extensive numerical simulations. Coverage probabilities for the frequentist methods are also obtained. Next we consider Bayes estimation under different types of loss function (symmetric and asymmetric loss functions) using gamma priors for both shape and scale parameters. Furthermore, the Bayes estimators and their respective posterior risks are computed and compared using MCMC algorithm. Finally, a real data set have been analyzed for illustrative purposes. |
id |
UNSP_5427db2257801ebca02491f1f2317a87 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/160483 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Statistical properties and different methods of estimation of Gompertz distribution with applicationBayes estimatorMaximum likelihood estimatorsMoment estimatorsMinimum distances estimatorsFailure rate functionMean residual life functionThis article addresses the various properties and different methods of estimation of the unknown parameters of Gompertz distribution. Although, our main focus is on estimation from both frequentist and Bayesian point of view, yet, various mathematical and statistical properties of the Gompertz distribution (such as quantiles, moments, moment generating function, hazard rate, mean residual lifetime, mean past lifetime, stochasic ordering, stress-strength parameter, various entropies, Bonferroni and Lorenz curves and order statistics) are derived. We briefly describe different frequentist approaches, namely, maximum likelihood estimators, moments estimators, pseudo-moments estimators, modified moments estimators, L-moment estimators, percentile based estimators, least squares and weighted least squares estimators, maximum product of spacings estimators, minimum spacing absolute distance estimators, minimum spacing absolute-log distance estimator, Cramer-von-Mises estimators, Anderson-Darling and right-tail Anderson-Darling and compare them using extensive numerical simulations. Coverage probabilities for the frequentist methods are also obtained. Next we consider Bayes estimation under different types of loss function (symmetric and asymmetric loss functions) using gamma priors for both shape and scale parameters. Furthermore, the Bayes estimators and their respective posterior risks are computed and compared using MCMC algorithm. Finally, a real data set have been analyzed for illustrative purposes.St Anthonys Coll, Dept Stat, Shillong 793001, Meghalaya, IndiaState Univ Sao Paulo, Dept Stat, Sao Paulo, BrazilCent Univ Haryana, Dept Stat, Mahendergarh 123031, Haryana, IndiaState Univ Sao Paulo, Dept Stat, Sao Paulo, BrazilTaru PublicationsSt Anthonys CollUniversidade Estadual Paulista (Unesp)Cent Univ HaryanaDey, SankuMoala, Fernando A. [UNESP]Kumar, Devendra2018-11-26T16:04:40Z2018-11-26T16:04:40Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article839-876application/pdfhttp://dx.doi.org/10.1080/09720510.2018.1450197Journal Of Statistics & Management Systems. New Delhi: Taru Publications, v. 21, n. 5, p. 839-876, 2018.0972-0510http://hdl.handle.net/11449/16048310.1080/09720510.2018.1450197WOS:000440968500008WOS000440968500008.pdf16212695523666970000-0002-2445-0407Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal Of Statistics & Management Systemsinfo:eu-repo/semantics/openAccess2023-10-09T06:07:31Zoai:repositorio.unesp.br:11449/160483Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:28:45.980320Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Statistical properties and different methods of estimation of Gompertz distribution with application |
title |
Statistical properties and different methods of estimation of Gompertz distribution with application |
spellingShingle |
Statistical properties and different methods of estimation of Gompertz distribution with application Dey, Sanku Bayes estimator Maximum likelihood estimators Moment estimators Minimum distances estimators Failure rate function Mean residual life function |
title_short |
Statistical properties and different methods of estimation of Gompertz distribution with application |
title_full |
Statistical properties and different methods of estimation of Gompertz distribution with application |
title_fullStr |
Statistical properties and different methods of estimation of Gompertz distribution with application |
title_full_unstemmed |
Statistical properties and different methods of estimation of Gompertz distribution with application |
title_sort |
Statistical properties and different methods of estimation of Gompertz distribution with application |
author |
Dey, Sanku |
author_facet |
Dey, Sanku Moala, Fernando A. [UNESP] Kumar, Devendra |
author_role |
author |
author2 |
Moala, Fernando A. [UNESP] Kumar, Devendra |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
St Anthonys Coll Universidade Estadual Paulista (Unesp) Cent Univ Haryana |
dc.contributor.author.fl_str_mv |
Dey, Sanku Moala, Fernando A. [UNESP] Kumar, Devendra |
dc.subject.por.fl_str_mv |
Bayes estimator Maximum likelihood estimators Moment estimators Minimum distances estimators Failure rate function Mean residual life function |
topic |
Bayes estimator Maximum likelihood estimators Moment estimators Minimum distances estimators Failure rate function Mean residual life function |
description |
This article addresses the various properties and different methods of estimation of the unknown parameters of Gompertz distribution. Although, our main focus is on estimation from both frequentist and Bayesian point of view, yet, various mathematical and statistical properties of the Gompertz distribution (such as quantiles, moments, moment generating function, hazard rate, mean residual lifetime, mean past lifetime, stochasic ordering, stress-strength parameter, various entropies, Bonferroni and Lorenz curves and order statistics) are derived. We briefly describe different frequentist approaches, namely, maximum likelihood estimators, moments estimators, pseudo-moments estimators, modified moments estimators, L-moment estimators, percentile based estimators, least squares and weighted least squares estimators, maximum product of spacings estimators, minimum spacing absolute distance estimators, minimum spacing absolute-log distance estimator, Cramer-von-Mises estimators, Anderson-Darling and right-tail Anderson-Darling and compare them using extensive numerical simulations. Coverage probabilities for the frequentist methods are also obtained. Next we consider Bayes estimation under different types of loss function (symmetric and asymmetric loss functions) using gamma priors for both shape and scale parameters. Furthermore, the Bayes estimators and their respective posterior risks are computed and compared using MCMC algorithm. Finally, a real data set have been analyzed for illustrative purposes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11-26T16:04:40Z 2018-11-26T16:04:40Z 2018-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1080/09720510.2018.1450197 Journal Of Statistics & Management Systems. New Delhi: Taru Publications, v. 21, n. 5, p. 839-876, 2018. 0972-0510 http://hdl.handle.net/11449/160483 10.1080/09720510.2018.1450197 WOS:000440968500008 WOS000440968500008.pdf 1621269552366697 0000-0002-2445-0407 |
url |
http://dx.doi.org/10.1080/09720510.2018.1450197 http://hdl.handle.net/11449/160483 |
identifier_str_mv |
Journal Of Statistics & Management Systems. New Delhi: Taru Publications, v. 21, n. 5, p. 839-876, 2018. 0972-0510 10.1080/09720510.2018.1450197 WOS:000440968500008 WOS000440968500008.pdf 1621269552366697 0000-0002-2445-0407 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal Of Statistics & Management Systems |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
839-876 application/pdf |
dc.publisher.none.fl_str_mv |
Taru Publications |
publisher.none.fl_str_mv |
Taru Publications |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128364706267136 |