Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200271 |
Resumo: | ABSTRACT Let P = 1 , 2 , . . . , n ≤ be a poset that is an union of disjoint chains of the same length and V = F q N be the space of N-tuples over the finite field F q. Let V i = F q k i , with 1 ≤ i ≤ n, be a family of finite-dimensional linear spaces such that k 1 + k 2 + . . . + k n = N and let V = V 1 × V 2 × . . . × V n endow with the poset block metric d P , π induced by the poset P and the partition π = k 1 , k 2 , . . . , k n, encompassing both Niederreiter-Rosenbloom-Tsfasman metric and error-block metric. In this paper, we give a complete description of group of isometries of the metric space V , d P , π, also called the Niederreiter-Rosenbloom-Tsfasman block space. In particular, we reobtain the group of isometries of the Niederreiter-Rosenbloom-Tsfasman space and obtain the group of isometries of the error-block metric space. |
id |
SBMAC-1_f22ba82961061df76cfc5c45c611d156 |
---|---|
oai_identifier_str |
oai:scielo:S2179-84512020000200271 |
network_acronym_str |
SBMAC-1 |
network_name_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository_id_str |
|
spelling |
Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Spaceerror-block metricposet metricNiederreiter-Rosenbloom-Tsfasman metricordered Hamming metricisometriesautomorphismsABSTRACT Let P = 1 , 2 , . . . , n ≤ be a poset that is an union of disjoint chains of the same length and V = F q N be the space of N-tuples over the finite field F q. Let V i = F q k i , with 1 ≤ i ≤ n, be a family of finite-dimensional linear spaces such that k 1 + k 2 + . . . + k n = N and let V = V 1 × V 2 × . . . × V n endow with the poset block metric d P , π induced by the poset P and the partition π = k 1 , k 2 , . . . , k n, encompassing both Niederreiter-Rosenbloom-Tsfasman metric and error-block metric. In this paper, we give a complete description of group of isometries of the metric space V , d P , π, also called the Niederreiter-Rosenbloom-Tsfasman block space. In particular, we reobtain the group of isometries of the Niederreiter-Rosenbloom-Tsfasman space and obtain the group of isometries of the error-block metric space.Sociedade Brasileira de Matemática Aplicada e Computacional2020-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200271TEMA (São Carlos) v.21 n.2 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.02.0002710271info:eu-repo/semantics/openAccessPANEK,LUCIANOPANEK,NAYENE MICHELE PAIÃOeng2020-07-30T00:00:00Zoai:scielo:S2179-84512020000200271Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-07-30T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse |
dc.title.none.fl_str_mv |
Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space |
title |
Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space |
spellingShingle |
Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space PANEK,LUCIANO error-block metric poset metric Niederreiter-Rosenbloom-Tsfasman metric ordered Hamming metric isometries automorphisms |
title_short |
Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space |
title_full |
Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space |
title_fullStr |
Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space |
title_full_unstemmed |
Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space |
title_sort |
Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space |
author |
PANEK,LUCIANO |
author_facet |
PANEK,LUCIANO PANEK,NAYENE MICHELE PAIÃO |
author_role |
author |
author2 |
PANEK,NAYENE MICHELE PAIÃO |
author2_role |
author |
dc.contributor.author.fl_str_mv |
PANEK,LUCIANO PANEK,NAYENE MICHELE PAIÃO |
dc.subject.por.fl_str_mv |
error-block metric poset metric Niederreiter-Rosenbloom-Tsfasman metric ordered Hamming metric isometries automorphisms |
topic |
error-block metric poset metric Niederreiter-Rosenbloom-Tsfasman metric ordered Hamming metric isometries automorphisms |
description |
ABSTRACT Let P = 1 , 2 , . . . , n ≤ be a poset that is an union of disjoint chains of the same length and V = F q N be the space of N-tuples over the finite field F q. Let V i = F q k i , with 1 ≤ i ≤ n, be a family of finite-dimensional linear spaces such that k 1 + k 2 + . . . + k n = N and let V = V 1 × V 2 × . . . × V n endow with the poset block metric d P , π induced by the poset P and the partition π = k 1 , k 2 , . . . , k n, encompassing both Niederreiter-Rosenbloom-Tsfasman metric and error-block metric. In this paper, we give a complete description of group of isometries of the metric space V , d P , π, also called the Niederreiter-Rosenbloom-Tsfasman block space. In particular, we reobtain the group of isometries of the Niederreiter-Rosenbloom-Tsfasman space and obtain the group of isometries of the error-block metric space. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200271 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200271 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5540/tema.2020.021.02.0002710271 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
TEMA (São Carlos) v.21 n.2 2020 reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) instname:Sociedade Brasileira de Matemática Aplicada e Computacional instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
collection |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) |
repository.name.fl_str_mv |
TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional |
repository.mail.fl_str_mv |
castelo@icmc.usp.br |
_version_ |
1752122220654624768 |