Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space

Detalhes bibliográficos
Autor(a) principal: PANEK,LUCIANO
Data de Publicação: 2020
Outros Autores: PANEK,NAYENE MICHELE PAIÃO
Tipo de documento: Artigo
Idioma: eng
Título da fonte: TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200271
Resumo: ABSTRACT Let P = 1 , 2 , . . . , n ≤ be a poset that is an union of disjoint chains of the same length and V = F q N be the space of N-tuples over the finite field F q. Let V i = F q k i , with 1 ≤ i ≤ n, be a family of finite-dimensional linear spaces such that k 1 + k 2 + . . . + k n = N and let V = V 1 × V 2 × . . . × V n endow with the poset block metric d P , π induced by the poset P and the partition π = k 1 , k 2 , . . . , k n, encompassing both Niederreiter-Rosenbloom-Tsfasman metric and error-block metric. In this paper, we give a complete description of group of isometries of the metric space V , d P , π, also called the Niederreiter-Rosenbloom-Tsfasman block space. In particular, we reobtain the group of isometries of the Niederreiter-Rosenbloom-Tsfasman space and obtain the group of isometries of the error-block metric space.
id SBMAC-1_f22ba82961061df76cfc5c45c611d156
oai_identifier_str oai:scielo:S2179-84512020000200271
network_acronym_str SBMAC-1
network_name_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository_id_str
spelling Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Spaceerror-block metricposet metricNiederreiter-Rosenbloom-Tsfasman metricordered Hamming metricisometriesautomorphismsABSTRACT Let P = 1 , 2 , . . . , n ≤ be a poset that is an union of disjoint chains of the same length and V = F q N be the space of N-tuples over the finite field F q. Let V i = F q k i , with 1 ≤ i ≤ n, be a family of finite-dimensional linear spaces such that k 1 + k 2 + . . . + k n = N and let V = V 1 × V 2 × . . . × V n endow with the poset block metric d P , π induced by the poset P and the partition π = k 1 , k 2 , . . . , k n, encompassing both Niederreiter-Rosenbloom-Tsfasman metric and error-block metric. In this paper, we give a complete description of group of isometries of the metric space V , d P , π, also called the Niederreiter-Rosenbloom-Tsfasman block space. In particular, we reobtain the group of isometries of the Niederreiter-Rosenbloom-Tsfasman space and obtain the group of isometries of the error-block metric space.Sociedade Brasileira de Matemática Aplicada e Computacional2020-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200271TEMA (São Carlos) v.21 n.2 2020reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)instname:Sociedade Brasileira de Matemática Aplicada e Computacionalinstacron:SBMAC10.5540/tema.2020.021.02.0002710271info:eu-repo/semantics/openAccessPANEK,LUCIANOPANEK,NAYENE MICHELE PAIÃOeng2020-07-30T00:00:00Zoai:scielo:S2179-84512020000200271Revistahttp://www.scielo.br/temaPUBhttps://old.scielo.br/oai/scielo-oai.phpcastelo@icmc.usp.br2179-84511677-1966opendoar:2020-07-30T00:00TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacionalfalse
dc.title.none.fl_str_mv Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space
title Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space
spellingShingle Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space
PANEK,LUCIANO
error-block metric
poset metric
Niederreiter-Rosenbloom-Tsfasman metric
ordered Hamming metric
isometries
automorphisms
title_short Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space
title_full Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space
title_fullStr Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space
title_full_unstemmed Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space
title_sort Group of Isometries of Niederreiter-Rosenbloom-Tsfasman Block Space
author PANEK,LUCIANO
author_facet PANEK,LUCIANO
PANEK,NAYENE MICHELE PAIÃO
author_role author
author2 PANEK,NAYENE MICHELE PAIÃO
author2_role author
dc.contributor.author.fl_str_mv PANEK,LUCIANO
PANEK,NAYENE MICHELE PAIÃO
dc.subject.por.fl_str_mv error-block metric
poset metric
Niederreiter-Rosenbloom-Tsfasman metric
ordered Hamming metric
isometries
automorphisms
topic error-block metric
poset metric
Niederreiter-Rosenbloom-Tsfasman metric
ordered Hamming metric
isometries
automorphisms
description ABSTRACT Let P = 1 , 2 , . . . , n ≤ be a poset that is an union of disjoint chains of the same length and V = F q N be the space of N-tuples over the finite field F q. Let V i = F q k i , with 1 ≤ i ≤ n, be a family of finite-dimensional linear spaces such that k 1 + k 2 + . . . + k n = N and let V = V 1 × V 2 × . . . × V n endow with the poset block metric d P , π induced by the poset P and the partition π = k 1 , k 2 , . . . , k n, encompassing both Niederreiter-Rosenbloom-Tsfasman metric and error-block metric. In this paper, we give a complete description of group of isometries of the metric space V , d P , π, also called the Niederreiter-Rosenbloom-Tsfasman block space. In particular, we reobtain the group of isometries of the Niederreiter-Rosenbloom-Tsfasman space and obtain the group of isometries of the error-block metric space.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200271
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-84512020000200271
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5540/tema.2020.021.02.0002710271
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv TEMA (São Carlos) v.21 n.2 2020
reponame:TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
instname:Sociedade Brasileira de Matemática Aplicada e Computacional
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional
instacron_str SBMAC
institution SBMAC
reponame_str TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
collection TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online)
repository.name.fl_str_mv TEMA (Sociedade Brasileira de Matemática Aplicada e Computacional. Online) - Sociedade Brasileira de Matemática Aplicada e Computacional
repository.mail.fl_str_mv castelo@icmc.usp.br
_version_ 1752122220654624768