A unified regularization theory: the maximum non-extensive entropy principle
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200011 |
Resumo: | Tsallis' non-extensive entropy is used as a regularization operator. The parameter ''q'' (non-extensivity parameter) has a central role in the Tsallis' thermostatiscs formalism. Here, several values of q are investigated in inverse problems, using q < 1 and q > 1. Two standard regularization techniques are recovered for special q-values: (i) q = 2 is the well known Tikhonov regularization; (ii) q = 1 is the standard Boltzmann-Gibbs-Shannon formulation for entropy. The regularization feature is illustrated in an inverse test problem: the estimation of initial condition in heat conduction problem. Two methods are studied for determining the regularization parameter, the maximum curvature for the L-curve, and the Morozov's discrepancy principle. The new regularization of higher order is applied to the retrieval of the atmospheric vertical profile from satellite data. |
id |
SBMAC-2_1d1145c38bdf2a63e153859c5e85333b |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022006000200011 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
A unified regularization theory: the maximum non-extensive entropy principleMaximum non-extensive entropy pincipleunified regularization theoryinverse problemsTsallis' non-extensive entropy is used as a regularization operator. The parameter ''q'' (non-extensivity parameter) has a central role in the Tsallis' thermostatiscs formalism. Here, several values of q are investigated in inverse problems, using q < 1 and q > 1. Two standard regularization techniques are recovered for special q-values: (i) q = 2 is the well known Tikhonov regularization; (ii) q = 1 is the standard Boltzmann-Gibbs-Shannon formulation for entropy. The regularization feature is illustrated in an inverse test problem: the estimation of initial condition in heat conduction problem. Two methods are studied for determining the regularization parameter, the maximum curvature for the L-curve, and the Morozov's discrepancy principle. The new regularization of higher order is applied to the retrieval of the atmospheric vertical profile from satellite data.Sociedade Brasileira de Matemática Aplicada e Computacional2006-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200011Computational & Applied Mathematics v.25 n.2-3 2006reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessVelho,Haroldo F. de CamposShiguemori,Elcio H.Ramos,Fernando M.Carvalho,João C.eng2007-03-19T00:00:00Zoai:scielo:S1807-03022006000200011Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2007-03-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
A unified regularization theory: the maximum non-extensive entropy principle |
title |
A unified regularization theory: the maximum non-extensive entropy principle |
spellingShingle |
A unified regularization theory: the maximum non-extensive entropy principle Velho,Haroldo F. de Campos Maximum non-extensive entropy pinciple unified regularization theory inverse problems |
title_short |
A unified regularization theory: the maximum non-extensive entropy principle |
title_full |
A unified regularization theory: the maximum non-extensive entropy principle |
title_fullStr |
A unified regularization theory: the maximum non-extensive entropy principle |
title_full_unstemmed |
A unified regularization theory: the maximum non-extensive entropy principle |
title_sort |
A unified regularization theory: the maximum non-extensive entropy principle |
author |
Velho,Haroldo F. de Campos |
author_facet |
Velho,Haroldo F. de Campos Shiguemori,Elcio H. Ramos,Fernando M. Carvalho,João C. |
author_role |
author |
author2 |
Shiguemori,Elcio H. Ramos,Fernando M. Carvalho,João C. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Velho,Haroldo F. de Campos Shiguemori,Elcio H. Ramos,Fernando M. Carvalho,João C. |
dc.subject.por.fl_str_mv |
Maximum non-extensive entropy pinciple unified regularization theory inverse problems |
topic |
Maximum non-extensive entropy pinciple unified regularization theory inverse problems |
description |
Tsallis' non-extensive entropy is used as a regularization operator. The parameter ''q'' (non-extensivity parameter) has a central role in the Tsallis' thermostatiscs formalism. Here, several values of q are investigated in inverse problems, using q < 1 and q > 1. Two standard regularization techniques are recovered for special q-values: (i) q = 2 is the well known Tikhonov regularization; (ii) q = 1 is the standard Boltzmann-Gibbs-Shannon formulation for entropy. The regularization feature is illustrated in an inverse test problem: the estimation of initial condition in heat conduction problem. Two methods are studied for determining the regularization parameter, the maximum curvature for the L-curve, and the Morozov's discrepancy principle. The new regularization of higher order is applied to the retrieval of the atmospheric vertical profile from satellite data. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200011 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200011 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.25 n.2-3 2006 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889819701248 |