A unified regularization theory: the maximum non-extensive entropy principle

Detalhes bibliográficos
Autor(a) principal: Velho,Haroldo F. de Campos
Data de Publicação: 2006
Outros Autores: Shiguemori,Elcio H., Ramos,Fernando M., Carvalho,João C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200011
Resumo: Tsallis' non-extensive entropy is used as a regularization operator. The parameter ''q'' (non-extensivity parameter) has a central role in the Tsallis' thermostatiscs formalism. Here, several values of q are investigated in inverse problems, using q < 1 and q > 1. Two standard regularization techniques are recovered for special q-values: (i) q = 2 is the well known Tikhonov regularization; (ii) q = 1 is the standard Boltzmann-Gibbs-Shannon formulation for entropy. The regularization feature is illustrated in an inverse test problem: the estimation of initial condition in heat conduction problem. Two methods are studied for determining the regularization parameter, the maximum curvature for the L-curve, and the Morozov's discrepancy principle. The new regularization of higher order is applied to the retrieval of the atmospheric vertical profile from satellite data.
id SBMAC-2_1d1145c38bdf2a63e153859c5e85333b
oai_identifier_str oai:scielo:S1807-03022006000200011
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling A unified regularization theory: the maximum non-extensive entropy principleMaximum non-extensive entropy pincipleunified regularization theoryinverse problemsTsallis' non-extensive entropy is used as a regularization operator. The parameter ''q'' (non-extensivity parameter) has a central role in the Tsallis' thermostatiscs formalism. Here, several values of q are investigated in inverse problems, using q < 1 and q > 1. Two standard regularization techniques are recovered for special q-values: (i) q = 2 is the well known Tikhonov regularization; (ii) q = 1 is the standard Boltzmann-Gibbs-Shannon formulation for entropy. The regularization feature is illustrated in an inverse test problem: the estimation of initial condition in heat conduction problem. Two methods are studied for determining the regularization parameter, the maximum curvature for the L-curve, and the Morozov's discrepancy principle. The new regularization of higher order is applied to the retrieval of the atmospheric vertical profile from satellite data.Sociedade Brasileira de Matemática Aplicada e Computacional2006-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200011Computational &amp; Applied Mathematics v.25 n.2-3 2006reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessVelho,Haroldo F. de CamposShiguemori,Elcio H.Ramos,Fernando M.Carvalho,João C.eng2007-03-19T00:00:00Zoai:scielo:S1807-03022006000200011Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2007-03-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv A unified regularization theory: the maximum non-extensive entropy principle
title A unified regularization theory: the maximum non-extensive entropy principle
spellingShingle A unified regularization theory: the maximum non-extensive entropy principle
Velho,Haroldo F. de Campos
Maximum non-extensive entropy pinciple
unified regularization theory
inverse problems
title_short A unified regularization theory: the maximum non-extensive entropy principle
title_full A unified regularization theory: the maximum non-extensive entropy principle
title_fullStr A unified regularization theory: the maximum non-extensive entropy principle
title_full_unstemmed A unified regularization theory: the maximum non-extensive entropy principle
title_sort A unified regularization theory: the maximum non-extensive entropy principle
author Velho,Haroldo F. de Campos
author_facet Velho,Haroldo F. de Campos
Shiguemori,Elcio H.
Ramos,Fernando M.
Carvalho,João C.
author_role author
author2 Shiguemori,Elcio H.
Ramos,Fernando M.
Carvalho,João C.
author2_role author
author
author
dc.contributor.author.fl_str_mv Velho,Haroldo F. de Campos
Shiguemori,Elcio H.
Ramos,Fernando M.
Carvalho,João C.
dc.subject.por.fl_str_mv Maximum non-extensive entropy pinciple
unified regularization theory
inverse problems
topic Maximum non-extensive entropy pinciple
unified regularization theory
inverse problems
description Tsallis' non-extensive entropy is used as a regularization operator. The parameter ''q'' (non-extensivity parameter) has a central role in the Tsallis' thermostatiscs formalism. Here, several values of q are investigated in inverse problems, using q < 1 and q > 1. Two standard regularization techniques are recovered for special q-values: (i) q = 2 is the well known Tikhonov regularization; (ii) q = 1 is the standard Boltzmann-Gibbs-Shannon formulation for entropy. The regularization feature is illustrated in an inverse test problem: the estimation of initial condition in heat conduction problem. Two methods are studied for determining the regularization parameter, the maximum curvature for the L-curve, and the Morozov's discrepancy principle. The new regularization of higher order is applied to the retrieval of the atmospheric vertical profile from satellite data.
publishDate 2006
dc.date.none.fl_str_mv 2006-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200011
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200011
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational &amp; Applied Mathematics v.25 n.2-3 2006
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734889819701248