Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundary
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200012 |
Resumo: | In this paper we consider the inverse problem of recovering the collision kernel for the time dependent linear Boltzmann equation via a finite number of boundary measurements. We prove that this kernel can be uniquely determined by at most k measurements, provided that it belongs to a finite k-dimensional vector space. |
id |
SBMAC-2_57b89efad384a27909b50827949be6ca |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022006000200012 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundaryinverse problemlinear Boltzmann equationalbedo operatorboundary measurementsIn this paper we consider the inverse problem of recovering the collision kernel for the time dependent linear Boltzmann equation via a finite number of boundary measurements. We prove that this kernel can be uniquely determined by at most k measurements, provided that it belongs to a finite k-dimensional vector space.Sociedade Brasileira de Matemática Aplicada e Computacional2006-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200012Computational & Applied Mathematics v.25 n.2-3 2006reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessCipolatti,Rolcieng2007-03-19T00:00:00Zoai:scielo:S1807-03022006000200012Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2007-03-19T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundary |
title |
Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundary |
spellingShingle |
Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundary Cipolatti,Rolci inverse problem linear Boltzmann equation albedo operator boundary measurements |
title_short |
Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundary |
title_full |
Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundary |
title_fullStr |
Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundary |
title_full_unstemmed |
Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundary |
title_sort |
Identification of the collision kernel in the linear Boltzmann equation by a finite number of measurements on the boundary |
author |
Cipolatti,Rolci |
author_facet |
Cipolatti,Rolci |
author_role |
author |
dc.contributor.author.fl_str_mv |
Cipolatti,Rolci |
dc.subject.por.fl_str_mv |
inverse problem linear Boltzmann equation albedo operator boundary measurements |
topic |
inverse problem linear Boltzmann equation albedo operator boundary measurements |
description |
In this paper we consider the inverse problem of recovering the collision kernel for the time dependent linear Boltzmann equation via a finite number of boundary measurements. We prove that this kernel can be uniquely determined by at most k measurements, provided that it belongs to a finite k-dimensional vector space. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200012 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022006000200012 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.25 n.2-3 2006 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889821798400 |