Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200006 |
Resumo: | In this paper, we propose a regularized factorized quasi-Newton method with a new Armijo-type line search and prove its global convergence for nonlinear least squares problems. This convergence result is extended to the regularized BFGS and DFP methods for solving strictly convex minimization problems. Some numerical results are presented to show efficiency of the proposed method. Mathematical subject classification: 90C53, 65K05. |
id |
SBMAC-2_6adac14dc6ace9e653f4d859afdb069d |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022010000200006 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problemsfactorized quasi-Newton methodnonlinear least squaresglobal convergenceIn this paper, we propose a regularized factorized quasi-Newton method with a new Armijo-type line search and prove its global convergence for nonlinear least squares problems. This convergence result is extended to the regularized BFGS and DFP methods for solving strictly convex minimization problems. Some numerical results are presented to show efficiency of the proposed method. Mathematical subject classification: 90C53, 65K05.Sociedade Brasileira de Matemática Aplicada e Computacional2010-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200006Computational & Applied Mathematics v.29 n.2 2010reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022010000200006info:eu-repo/semantics/openAccessZhou,WeijunZhang,Lieng2010-07-22T00:00:00Zoai:scielo:S1807-03022010000200006Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2010-07-22T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems |
title |
Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems |
spellingShingle |
Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems Zhou,Weijun factorized quasi-Newton method nonlinear least squares global convergence |
title_short |
Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems |
title_full |
Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems |
title_fullStr |
Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems |
title_full_unstemmed |
Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems |
title_sort |
Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems |
author |
Zhou,Weijun |
author_facet |
Zhou,Weijun Zhang,Li |
author_role |
author |
author2 |
Zhang,Li |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Zhou,Weijun Zhang,Li |
dc.subject.por.fl_str_mv |
factorized quasi-Newton method nonlinear least squares global convergence |
topic |
factorized quasi-Newton method nonlinear least squares global convergence |
description |
In this paper, we propose a regularized factorized quasi-Newton method with a new Armijo-type line search and prove its global convergence for nonlinear least squares problems. This convergence result is extended to the regularized BFGS and DFP methods for solving strictly convex minimization problems. Some numerical results are presented to show efficiency of the proposed method. Mathematical subject classification: 90C53, 65K05. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-03022010000200006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.29 n.2 2010 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890211868672 |