Treatment of geophysical data as a non-stationary process
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000200001 |
Resumo: | The Kalman-Bucy method is here analized and applied to the solution of a specific filtering problem to increase the signal message/noise ratio. The method is a time domain treatment of a geophysical process classified as stochastic non-stationary. The derivation of the estimator is based on the relationship between the Kalman-Bucy and Wiener approaches for linear systems. In the present work we emphasize the criterion used, the model with apriori information, the algorithm, and the quality as related to the results. The examples are for the ideal well-log response, and the results indicate that this method can be used on a variety of geophysical data treatments, and its study clearly offers a proper insight into modeling and processing of geophysical problems. |
id |
SBMAC-2_82357d194e5700d2d3de2b56cde4ccf7 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022003000200001 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Treatment of geophysical data as a non-stationary processstochastic processKalmann-Bucy filterdeconvolutionstate spaceThe Kalman-Bucy method is here analized and applied to the solution of a specific filtering problem to increase the signal message/noise ratio. The method is a time domain treatment of a geophysical process classified as stochastic non-stationary. The derivation of the estimator is based on the relationship between the Kalman-Bucy and Wiener approaches for linear systems. In the present work we emphasize the criterion used, the model with apriori information, the algorithm, and the quality as related to the results. The examples are for the ideal well-log response, and the results indicate that this method can be used on a variety of geophysical data treatments, and its study clearly offers a proper insight into modeling and processing of geophysical problems.Sociedade Brasileira de Matemática Aplicada e Computacional2003-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000200001Computational & Applied Mathematics v.22 n.2 2003reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S0101-82052003000200001info:eu-repo/semantics/openAccessRocha,Marcus P.C.Leite,Lourenildo W.B.eng2004-07-20T00:00:00Zoai:scielo:S1807-03022003000200001Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2004-07-20T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Treatment of geophysical data as a non-stationary process |
title |
Treatment of geophysical data as a non-stationary process |
spellingShingle |
Treatment of geophysical data as a non-stationary process Rocha,Marcus P.C. stochastic process Kalmann-Bucy filter deconvolution state space |
title_short |
Treatment of geophysical data as a non-stationary process |
title_full |
Treatment of geophysical data as a non-stationary process |
title_fullStr |
Treatment of geophysical data as a non-stationary process |
title_full_unstemmed |
Treatment of geophysical data as a non-stationary process |
title_sort |
Treatment of geophysical data as a non-stationary process |
author |
Rocha,Marcus P.C. |
author_facet |
Rocha,Marcus P.C. Leite,Lourenildo W.B. |
author_role |
author |
author2 |
Leite,Lourenildo W.B. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Rocha,Marcus P.C. Leite,Lourenildo W.B. |
dc.subject.por.fl_str_mv |
stochastic process Kalmann-Bucy filter deconvolution state space |
topic |
stochastic process Kalmann-Bucy filter deconvolution state space |
description |
The Kalman-Bucy method is here analized and applied to the solution of a specific filtering problem to increase the signal message/noise ratio. The method is a time domain treatment of a geophysical process classified as stochastic non-stationary. The derivation of the estimator is based on the relationship between the Kalman-Bucy and Wiener approaches for linear systems. In the present work we emphasize the criterion used, the model with apriori information, the algorithm, and the quality as related to the results. The examples are for the ideal well-log response, and the results indicate that this method can be used on a variety of geophysical data treatments, and its study clearly offers a proper insight into modeling and processing of geophysical problems. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000200001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022003000200001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-82052003000200001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.22 n.2 2003 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889658220544 |