Closed balls for interpolating quasi-polynomials

Detalhes bibliográficos
Autor(a) principal: Wen,Jiajin
Data de Publicação: 2011
Outros Autores: Cheng,Sui Sun
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300004
Resumo: The classic interpolation problem asks for polynomials to fit a set of given data. In this paper, quasi-polynomials are considered as interpolating functions passing through a set of spatial points. Existence and uniqueness is obtained by means of generalized Vandermonde determinants. By means of several estimates related to these determinants, we are also able to find closed balls for any given centers that enclose the approximating curves. By choosing proper centers based on the observed spatial points, these balls may lead us to applications such as satellite tracking and control. Mathematical subject classification: 41A05.
id SBMAC-2_872a9da6013805759bea39db700438ce
oai_identifier_str oai:scielo:S1807-03022011000300004
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling Closed balls for interpolating quasi-polynomialsinterpolationreference pointerror boundquasi-polynomialThe classic interpolation problem asks for polynomials to fit a set of given data. In this paper, quasi-polynomials are considered as interpolating functions passing through a set of spatial points. Existence and uniqueness is obtained by means of generalized Vandermonde determinants. By means of several estimates related to these determinants, we are also able to find closed balls for any given centers that enclose the approximating curves. By choosing proper centers based on the observed spatial points, these balls may lead us to applications such as satellite tracking and control. Mathematical subject classification: 41A05.Sociedade Brasileira de Matemática Aplicada e Computacional2011-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300004Computational & Applied Mathematics v.30 n.3 2011reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022011000300004info:eu-repo/semantics/openAccessWen,JiajinCheng,Sui Suneng2012-01-06T00:00:00Zoai:scielo:S1807-03022011000300004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2012-01-06T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv Closed balls for interpolating quasi-polynomials
title Closed balls for interpolating quasi-polynomials
spellingShingle Closed balls for interpolating quasi-polynomials
Wen,Jiajin
interpolation
reference point
error bound
quasi-polynomial
title_short Closed balls for interpolating quasi-polynomials
title_full Closed balls for interpolating quasi-polynomials
title_fullStr Closed balls for interpolating quasi-polynomials
title_full_unstemmed Closed balls for interpolating quasi-polynomials
title_sort Closed balls for interpolating quasi-polynomials
author Wen,Jiajin
author_facet Wen,Jiajin
Cheng,Sui Sun
author_role author
author2 Cheng,Sui Sun
author2_role author
dc.contributor.author.fl_str_mv Wen,Jiajin
Cheng,Sui Sun
dc.subject.por.fl_str_mv interpolation
reference point
error bound
quasi-polynomial
topic interpolation
reference point
error bound
quasi-polynomial
description The classic interpolation problem asks for polynomials to fit a set of given data. In this paper, quasi-polynomials are considered as interpolating functions passing through a set of spatial points. Existence and uniqueness is obtained by means of generalized Vandermonde determinants. By means of several estimates related to these determinants, we are also able to find closed balls for any given centers that enclose the approximating curves. By choosing proper centers based on the observed spatial points, these balls may lead us to applications such as satellite tracking and control. Mathematical subject classification: 41A05.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300004
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1807-03022011000300004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.30 n.3 2011
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734890318823424