Closed balls for interpolating quasi-polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300004 |
Resumo: | The classic interpolation problem asks for polynomials to fit a set of given data. In this paper, quasi-polynomials are considered as interpolating functions passing through a set of spatial points. Existence and uniqueness is obtained by means of generalized Vandermonde determinants. By means of several estimates related to these determinants, we are also able to find closed balls for any given centers that enclose the approximating curves. By choosing proper centers based on the observed spatial points, these balls may lead us to applications such as satellite tracking and control. Mathematical subject classification: 41A05. |
id |
SBMAC-2_872a9da6013805759bea39db700438ce |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022011000300004 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Closed balls for interpolating quasi-polynomialsinterpolationreference pointerror boundquasi-polynomialThe classic interpolation problem asks for polynomials to fit a set of given data. In this paper, quasi-polynomials are considered as interpolating functions passing through a set of spatial points. Existence and uniqueness is obtained by means of generalized Vandermonde determinants. By means of several estimates related to these determinants, we are also able to find closed balls for any given centers that enclose the approximating curves. By choosing proper centers based on the observed spatial points, these balls may lead us to applications such as satellite tracking and control. Mathematical subject classification: 41A05.Sociedade Brasileira de Matemática Aplicada e Computacional2011-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300004Computational & Applied Mathematics v.30 n.3 2011reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022011000300004info:eu-repo/semantics/openAccessWen,JiajinCheng,Sui Suneng2012-01-06T00:00:00Zoai:scielo:S1807-03022011000300004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2012-01-06T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Closed balls for interpolating quasi-polynomials |
title |
Closed balls for interpolating quasi-polynomials |
spellingShingle |
Closed balls for interpolating quasi-polynomials Wen,Jiajin interpolation reference point error bound quasi-polynomial |
title_short |
Closed balls for interpolating quasi-polynomials |
title_full |
Closed balls for interpolating quasi-polynomials |
title_fullStr |
Closed balls for interpolating quasi-polynomials |
title_full_unstemmed |
Closed balls for interpolating quasi-polynomials |
title_sort |
Closed balls for interpolating quasi-polynomials |
author |
Wen,Jiajin |
author_facet |
Wen,Jiajin Cheng,Sui Sun |
author_role |
author |
author2 |
Cheng,Sui Sun |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Wen,Jiajin Cheng,Sui Sun |
dc.subject.por.fl_str_mv |
interpolation reference point error bound quasi-polynomial |
topic |
interpolation reference point error bound quasi-polynomial |
description |
The classic interpolation problem asks for polynomials to fit a set of given data. In this paper, quasi-polynomials are considered as interpolating functions passing through a set of spatial points. Existence and uniqueness is obtained by means of generalized Vandermonde determinants. By means of several estimates related to these determinants, we are also able to find closed balls for any given centers that enclose the approximating curves. By choosing proper centers based on the observed spatial points, these balls may lead us to applications such as satellite tracking and control. Mathematical subject classification: 41A05. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-03022011000300004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.30 n.3 2011 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890318823424 |