Unitary invariant and residual independent matrix distributions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000100004 |
Resumo: | Define Z13 = A½Y(A½)H (A and Y are independent) and Z15 = B½Y(B½)H (B and Y are independent), where Y, A and B follow inverted complex Wishart, complex beta type I and complex beta type II distributions, respectively. In this article several properties including expected values of scalar and matrix valued functions of Z13 and Z15 are derived. |
id |
SBMAC-2_9b403e0f3cf9ceab2fb025fc52a64c0a |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022009000100004 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Unitary invariant and residual independent matrix distributionsbeta distributioninverted complex Wishartcomplex random matrixGauss hypergeometric functionresidual independentunitary invariantzonal polynomialDefine Z13 = A½Y(A½)H (A and Y are independent) and Z15 = B½Y(B½)H (B and Y are independent), where Y, A and B follow inverted complex Wishart, complex beta type I and complex beta type II distributions, respectively. In this article several properties including expected values of scalar and matrix valued functions of Z13 and Z15 are derived.Sociedade Brasileira de Matemática Aplicada e Computacional2009-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000100004Computational & Applied Mathematics v.28 n.1 2009reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S0101-82052009000100004info:eu-repo/semantics/openAccessGupta,Arjun K.Nagar,Daya K.Vélez-Carvajal,Astrid M.eng2009-03-30T00:00:00Zoai:scielo:S1807-03022009000100004Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2009-03-30T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Unitary invariant and residual independent matrix distributions |
title |
Unitary invariant and residual independent matrix distributions |
spellingShingle |
Unitary invariant and residual independent matrix distributions Gupta,Arjun K. beta distribution inverted complex Wishart complex random matrix Gauss hypergeometric function residual independent unitary invariant zonal polynomial |
title_short |
Unitary invariant and residual independent matrix distributions |
title_full |
Unitary invariant and residual independent matrix distributions |
title_fullStr |
Unitary invariant and residual independent matrix distributions |
title_full_unstemmed |
Unitary invariant and residual independent matrix distributions |
title_sort |
Unitary invariant and residual independent matrix distributions |
author |
Gupta,Arjun K. |
author_facet |
Gupta,Arjun K. Nagar,Daya K. Vélez-Carvajal,Astrid M. |
author_role |
author |
author2 |
Nagar,Daya K. Vélez-Carvajal,Astrid M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Gupta,Arjun K. Nagar,Daya K. Vélez-Carvajal,Astrid M. |
dc.subject.por.fl_str_mv |
beta distribution inverted complex Wishart complex random matrix Gauss hypergeometric function residual independent unitary invariant zonal polynomial |
topic |
beta distribution inverted complex Wishart complex random matrix Gauss hypergeometric function residual independent unitary invariant zonal polynomial |
description |
Define Z13 = A½Y(A½)H (A and Y are independent) and Z15 = B½Y(B½)H (B and Y are independent), where Y, A and B follow inverted complex Wishart, complex beta type I and complex beta type II distributions, respectively. In this article several properties including expected values of scalar and matrix valued functions of Z13 and Z15 are derived. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000100004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000100004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0101-82052009000100004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.28 n.1 2009 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890179362816 |