Rotation-invariant image description from independent component analysis for classification purposes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/70632 |
Resumo: | Independent component analysis (ICA) is a recent technique used in signal processing for feature description in classification systems, as well as in signal separation, with applications ranging from computer vision to economics. In this paper we propose a preprocessing step in order to make ICA algorithm efficient for rotation invariant feature description of images. Tests were carried out on five datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate increased up to 93.33%. |
id |
UFC-7_5ae41d5f14c01c08a3c510297a66df2c |
---|---|
oai_identifier_str |
oai:repositorio.ufc.br:riufc/70632 |
network_acronym_str |
UFC-7 |
network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository_id_str |
|
spelling |
Rotation-invariant image description from independent component analysis for classification purposesIndependent component analysisInvariant rotationPattern recognitionIndependent component analysis (ICA) is a recent technique used in signal processing for feature description in classification systems, as well as in signal separation, with applications ranging from computer vision to economics. In this paper we propose a preprocessing step in order to make ICA algorithm efficient for rotation invariant feature description of images. Tests were carried out on five datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate increased up to 93.33%.International Conference on Informatics in Control, Automation and Robotics2023-02-08T18:43:03Z2023-02-08T18:43:03Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfSILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Rotation-invariant image description from independent component analysis for classification purposes. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 12., 2015, Colmar. Anais... Colmar: IEEE, 2015. p. 1-7.http://www.repositorio.ufc.br/handle/riufc/70632Silva, Rodrigo Dalvit Carvalho daThé, George André PereiraMedeiros, Fátima Nelsizeuma Sombra deengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-10T13:45:12Zoai:repositorio.ufc.br:riufc/70632Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:52:04.429500Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
dc.title.none.fl_str_mv |
Rotation-invariant image description from independent component analysis for classification purposes |
title |
Rotation-invariant image description from independent component analysis for classification purposes |
spellingShingle |
Rotation-invariant image description from independent component analysis for classification purposes Silva, Rodrigo Dalvit Carvalho da Independent component analysis Invariant rotation Pattern recognition |
title_short |
Rotation-invariant image description from independent component analysis for classification purposes |
title_full |
Rotation-invariant image description from independent component analysis for classification purposes |
title_fullStr |
Rotation-invariant image description from independent component analysis for classification purposes |
title_full_unstemmed |
Rotation-invariant image description from independent component analysis for classification purposes |
title_sort |
Rotation-invariant image description from independent component analysis for classification purposes |
author |
Silva, Rodrigo Dalvit Carvalho da |
author_facet |
Silva, Rodrigo Dalvit Carvalho da Thé, George André Pereira Medeiros, Fátima Nelsizeuma Sombra de |
author_role |
author |
author2 |
Thé, George André Pereira Medeiros, Fátima Nelsizeuma Sombra de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Silva, Rodrigo Dalvit Carvalho da Thé, George André Pereira Medeiros, Fátima Nelsizeuma Sombra de |
dc.subject.por.fl_str_mv |
Independent component analysis Invariant rotation Pattern recognition |
topic |
Independent component analysis Invariant rotation Pattern recognition |
description |
Independent component analysis (ICA) is a recent technique used in signal processing for feature description in classification systems, as well as in signal separation, with applications ranging from computer vision to economics. In this paper we propose a preprocessing step in order to make ICA algorithm efficient for rotation invariant feature description of images. Tests were carried out on five datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate increased up to 93.33%. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2023-02-08T18:43:03Z 2023-02-08T18:43:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Rotation-invariant image description from independent component analysis for classification purposes. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 12., 2015, Colmar. Anais... Colmar: IEEE, 2015. p. 1-7. http://www.repositorio.ufc.br/handle/riufc/70632 |
identifier_str_mv |
SILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Rotation-invariant image description from independent component analysis for classification purposes. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 12., 2015, Colmar. Anais... Colmar: IEEE, 2015. p. 1-7. |
url |
http://www.repositorio.ufc.br/handle/riufc/70632 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
International Conference on Informatics in Control, Automation and Robotics |
publisher.none.fl_str_mv |
International Conference on Informatics in Control, Automation and Robotics |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
instname_str |
Universidade Federal do Ceará (UFC) |
instacron_str |
UFC |
institution |
UFC |
reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
_version_ |
1813028976960995328 |