Rotation-invariant image description from independent component analysis for classification purposes

Detalhes bibliográficos
Autor(a) principal: Silva, Rodrigo Dalvit Carvalho da
Data de Publicação: 2015
Outros Autores: Thé, George André Pereira, Medeiros, Fátima Nelsizeuma Sombra de
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/70632
Resumo: Independent component analysis (ICA) is a recent technique used in signal processing for feature description in classification systems, as well as in signal separation, with applications ranging from computer vision to economics. In this paper we propose a preprocessing step in order to make ICA algorithm efficient for rotation invariant feature description of images. Tests were carried out on five datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate increased up to 93.33%.
id UFC-7_5ae41d5f14c01c08a3c510297a66df2c
oai_identifier_str oai:repositorio.ufc.br:riufc/70632
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Rotation-invariant image description from independent component analysis for classification purposesIndependent component analysisInvariant rotationPattern recognitionIndependent component analysis (ICA) is a recent technique used in signal processing for feature description in classification systems, as well as in signal separation, with applications ranging from computer vision to economics. In this paper we propose a preprocessing step in order to make ICA algorithm efficient for rotation invariant feature description of images. Tests were carried out on five datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate increased up to 93.33%.International Conference on Informatics in Control, Automation and Robotics2023-02-08T18:43:03Z2023-02-08T18:43:03Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfSILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Rotation-invariant image description from independent component analysis for classification purposes. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 12., 2015, Colmar. Anais... Colmar: IEEE, 2015. p. 1-7.http://www.repositorio.ufc.br/handle/riufc/70632Silva, Rodrigo Dalvit Carvalho daThé, George André PereiraMedeiros, Fátima Nelsizeuma Sombra deengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2023-02-10T13:45:12Zoai:repositorio.ufc.br:riufc/70632Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-09-11T18:52:04.429500Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Rotation-invariant image description from independent component analysis for classification purposes
title Rotation-invariant image description from independent component analysis for classification purposes
spellingShingle Rotation-invariant image description from independent component analysis for classification purposes
Silva, Rodrigo Dalvit Carvalho da
Independent component analysis
Invariant rotation
Pattern recognition
title_short Rotation-invariant image description from independent component analysis for classification purposes
title_full Rotation-invariant image description from independent component analysis for classification purposes
title_fullStr Rotation-invariant image description from independent component analysis for classification purposes
title_full_unstemmed Rotation-invariant image description from independent component analysis for classification purposes
title_sort Rotation-invariant image description from independent component analysis for classification purposes
author Silva, Rodrigo Dalvit Carvalho da
author_facet Silva, Rodrigo Dalvit Carvalho da
Thé, George André Pereira
Medeiros, Fátima Nelsizeuma Sombra de
author_role author
author2 Thé, George André Pereira
Medeiros, Fátima Nelsizeuma Sombra de
author2_role author
author
dc.contributor.author.fl_str_mv Silva, Rodrigo Dalvit Carvalho da
Thé, George André Pereira
Medeiros, Fátima Nelsizeuma Sombra de
dc.subject.por.fl_str_mv Independent component analysis
Invariant rotation
Pattern recognition
topic Independent component analysis
Invariant rotation
Pattern recognition
description Independent component analysis (ICA) is a recent technique used in signal processing for feature description in classification systems, as well as in signal separation, with applications ranging from computer vision to economics. In this paper we propose a preprocessing step in order to make ICA algorithm efficient for rotation invariant feature description of images. Tests were carried out on five datasets and the extracted descriptors were used as inputs to the k-nearest neighbor (k-NN) classifier. Results showed an increasing trend on the recognition rate, which approached 100%. Additionally, when low-resolution images acquired from an industrial time-of-flight sensor are used, the recognition rate increased up to 93.33%.
publishDate 2015
dc.date.none.fl_str_mv 2015
2023-02-08T18:43:03Z
2023-02-08T18:43:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Rotation-invariant image description from independent component analysis for classification purposes. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 12., 2015, Colmar. Anais... Colmar: IEEE, 2015. p. 1-7.
http://www.repositorio.ufc.br/handle/riufc/70632
identifier_str_mv SILVA, R. D. C.; THÉ, G. A. P.; MEDEIROS, F. N. S. Rotation-invariant image description from independent component analysis for classification purposes. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 12., 2015, Colmar. Anais... Colmar: IEEE, 2015. p. 1-7.
url http://www.repositorio.ufc.br/handle/riufc/70632
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv International Conference on Informatics in Control, Automation and Robotics
publisher.none.fl_str_mv International Conference on Informatics in Control, Automation and Robotics
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1813028976960995328