Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line search
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200001 |
Resumo: | A trust-region method with two subproblems and backtracking line search for solving unconstrained optimization is proposed. At every iteration, we use the truncated conjugate gradient method or its variation to solve one of the two subproblems approximately. Backtracking line search is carried out when the trust-region trail step fails. We show that this method have the same convergence properties as the traditional trust-region method based on the truncated conjugate gradient method. Numerical results show that this method is as reliable as the traditional one and more efficient in respect of iterations, CPU time and evaluations. Mathematical subject classification: Primary: 65K05; Secondary: 90C30. |
id |
SBMAC-2_a08f3f27028d96eca21cea11ea32ad2e |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022010000200001 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line searchtruncated conjugate gradienttrust-regiontwo subproblemsbacktrackingconvergenceA trust-region method with two subproblems and backtracking line search for solving unconstrained optimization is proposed. At every iteration, we use the truncated conjugate gradient method or its variation to solve one of the two subproblems approximately. Backtracking line search is carried out when the trust-region trail step fails. We show that this method have the same convergence properties as the traditional trust-region method based on the truncated conjugate gradient method. Numerical results show that this method is as reliable as the traditional one and more efficient in respect of iterations, CPU time and evaluations. Mathematical subject classification: Primary: 65K05; Secondary: 90C30.Sociedade Brasileira de Matemática Aplicada e Computacional2010-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200001Computational & Applied Mathematics v.29 n.2 2010reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022010000200001info:eu-repo/semantics/openAccessTang,MingyunYuan,Ya-Xiangeng2010-07-22T00:00:00Zoai:scielo:S1807-03022010000200001Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2010-07-22T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line search |
title |
Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line search |
spellingShingle |
Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line search Tang,Mingyun truncated conjugate gradient trust-region two subproblems backtracking convergence |
title_short |
Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line search |
title_full |
Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line search |
title_fullStr |
Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line search |
title_full_unstemmed |
Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line search |
title_sort |
Using truncated conjugate gradient method in trust-region method with two subproblems and backtracking line search |
author |
Tang,Mingyun |
author_facet |
Tang,Mingyun Yuan,Ya-Xiang |
author_role |
author |
author2 |
Yuan,Ya-Xiang |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Tang,Mingyun Yuan,Ya-Xiang |
dc.subject.por.fl_str_mv |
truncated conjugate gradient trust-region two subproblems backtracking convergence |
topic |
truncated conjugate gradient trust-region two subproblems backtracking convergence |
description |
A trust-region method with two subproblems and backtracking line search for solving unconstrained optimization is proposed. At every iteration, we use the truncated conjugate gradient method or its variation to solve one of the two subproblems approximately. Backtracking line search is carried out when the trust-region trail step fails. We show that this method have the same convergence properties as the traditional trust-region method based on the truncated conjugate gradient method. Numerical results show that this method is as reliable as the traditional one and more efficient in respect of iterations, CPU time and evaluations. Mathematical subject classification: Primary: 65K05; Secondary: 90C30. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200001 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022010000200001 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-03022010000200001 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.29 n.2 2010 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890205577216 |