Bifurcation analysis of the Watt governor system

Detalhes bibliográficos
Autor(a) principal: Sotomayor,Jorge
Data de Publicação: 2007
Outros Autores: Mello,Luis Fernando, Braga,Denis de Carvalho
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100002
Resumo: This paper pursues the study carried out by the authors in Stability and Hopf bifurcation in the Watt governor system [14], focusing on the codimension one Hopf bifurcations in the centrifugal Watt governor differential system, as presented in Pontryagin's book Ordinary Differential Equations, [13]. Here are studied the codimension two and three Hopf bifurcations and the pertinent Lyapunov stability coefficients and bifurcation diagrams, illustrating the number, types and positions of bifurcating small amplitude periodic orbits, are determined. As a consequence it is found a region in the space of parameters where an attracting periodic orbit coexists with an attracting equilibrium.
id SBMAC-2_d13474ec6058620ea9d95ccc3a5193f8
oai_identifier_str oai:scielo:S1807-03022007000100002
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling Bifurcation analysis of the Watt governor systemcentrifugal governorHopf bifurcationsperiodic orbitThis paper pursues the study carried out by the authors in Stability and Hopf bifurcation in the Watt governor system [14], focusing on the codimension one Hopf bifurcations in the centrifugal Watt governor differential system, as presented in Pontryagin's book Ordinary Differential Equations, [13]. Here are studied the codimension two and three Hopf bifurcations and the pertinent Lyapunov stability coefficients and bifurcation diagrams, illustrating the number, types and positions of bifurcating small amplitude periodic orbits, are determined. As a consequence it is found a region in the space of parameters where an attracting periodic orbit coexists with an attracting equilibrium.Sociedade Brasileira de Matemática Aplicada e Computacional2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100002Computational & Applied Mathematics v.26 n.1 2007reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessSotomayor,JorgeMello,Luis FernandoBraga,Denis de Carvalhoeng2007-05-10T00:00:00Zoai:scielo:S1807-03022007000100002Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2007-05-10T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv Bifurcation analysis of the Watt governor system
title Bifurcation analysis of the Watt governor system
spellingShingle Bifurcation analysis of the Watt governor system
Sotomayor,Jorge
centrifugal governor
Hopf bifurcations
periodic orbit
title_short Bifurcation analysis of the Watt governor system
title_full Bifurcation analysis of the Watt governor system
title_fullStr Bifurcation analysis of the Watt governor system
title_full_unstemmed Bifurcation analysis of the Watt governor system
title_sort Bifurcation analysis of the Watt governor system
author Sotomayor,Jorge
author_facet Sotomayor,Jorge
Mello,Luis Fernando
Braga,Denis de Carvalho
author_role author
author2 Mello,Luis Fernando
Braga,Denis de Carvalho
author2_role author
author
dc.contributor.author.fl_str_mv Sotomayor,Jorge
Mello,Luis Fernando
Braga,Denis de Carvalho
dc.subject.por.fl_str_mv centrifugal governor
Hopf bifurcations
periodic orbit
topic centrifugal governor
Hopf bifurcations
periodic orbit
description This paper pursues the study carried out by the authors in Stability and Hopf bifurcation in the Watt governor system [14], focusing on the codimension one Hopf bifurcations in the centrifugal Watt governor differential system, as presented in Pontryagin's book Ordinary Differential Equations, [13]. Here are studied the codimension two and three Hopf bifurcations and the pertinent Lyapunov stability coefficients and bifurcation diagrams, illustrating the number, types and positions of bifurcating small amplitude periodic orbits, are determined. As a consequence it is found a region in the space of parameters where an attracting periodic orbit coexists with an attracting equilibrium.
publishDate 2007
dc.date.none.fl_str_mv 2007-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100002
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100002
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.26 n.1 2007
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734889824944128