Bifurcation analysis of the Watt governor system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100002 |
Resumo: | This paper pursues the study carried out by the authors in Stability and Hopf bifurcation in the Watt governor system [14], focusing on the codimension one Hopf bifurcations in the centrifugal Watt governor differential system, as presented in Pontryagin's book Ordinary Differential Equations, [13]. Here are studied the codimension two and three Hopf bifurcations and the pertinent Lyapunov stability coefficients and bifurcation diagrams, illustrating the number, types and positions of bifurcating small amplitude periodic orbits, are determined. As a consequence it is found a region in the space of parameters where an attracting periodic orbit coexists with an attracting equilibrium. |
id |
SBMAC-2_d13474ec6058620ea9d95ccc3a5193f8 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022007000100002 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Bifurcation analysis of the Watt governor systemcentrifugal governorHopf bifurcationsperiodic orbitThis paper pursues the study carried out by the authors in Stability and Hopf bifurcation in the Watt governor system [14], focusing on the codimension one Hopf bifurcations in the centrifugal Watt governor differential system, as presented in Pontryagin's book Ordinary Differential Equations, [13]. Here are studied the codimension two and three Hopf bifurcations and the pertinent Lyapunov stability coefficients and bifurcation diagrams, illustrating the number, types and positions of bifurcating small amplitude periodic orbits, are determined. As a consequence it is found a region in the space of parameters where an attracting periodic orbit coexists with an attracting equilibrium.Sociedade Brasileira de Matemática Aplicada e Computacional2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100002Computational & Applied Mathematics v.26 n.1 2007reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessSotomayor,JorgeMello,Luis FernandoBraga,Denis de Carvalhoeng2007-05-10T00:00:00Zoai:scielo:S1807-03022007000100002Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2007-05-10T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Bifurcation analysis of the Watt governor system |
title |
Bifurcation analysis of the Watt governor system |
spellingShingle |
Bifurcation analysis of the Watt governor system Sotomayor,Jorge centrifugal governor Hopf bifurcations periodic orbit |
title_short |
Bifurcation analysis of the Watt governor system |
title_full |
Bifurcation analysis of the Watt governor system |
title_fullStr |
Bifurcation analysis of the Watt governor system |
title_full_unstemmed |
Bifurcation analysis of the Watt governor system |
title_sort |
Bifurcation analysis of the Watt governor system |
author |
Sotomayor,Jorge |
author_facet |
Sotomayor,Jorge Mello,Luis Fernando Braga,Denis de Carvalho |
author_role |
author |
author2 |
Mello,Luis Fernando Braga,Denis de Carvalho |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Sotomayor,Jorge Mello,Luis Fernando Braga,Denis de Carvalho |
dc.subject.por.fl_str_mv |
centrifugal governor Hopf bifurcations periodic orbit |
topic |
centrifugal governor Hopf bifurcations periodic orbit |
description |
This paper pursues the study carried out by the authors in Stability and Hopf bifurcation in the Watt governor system [14], focusing on the codimension one Hopf bifurcations in the centrifugal Watt governor differential system, as presented in Pontryagin's book Ordinary Differential Equations, [13]. Here are studied the codimension two and three Hopf bifurcations and the pertinent Lyapunov stability coefficients and bifurcation diagrams, illustrating the number, types and positions of bifurcating small amplitude periodic orbits, are determined. As a consequence it is found a region in the space of parameters where an attracting periodic orbit coexists with an attracting equilibrium. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022007000100002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.26 n.1 2007 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889824944128 |