Block triangular preconditioner for static Maxwell equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300006 |
Resumo: | In this paper, we explore the block triangular preconditioning techniques applied to the iterative solution of the saddle point linear systems arising from the discretized Maxwell equations. Theoretical analysis shows that all the eigenvalues of the preconditioned matrix arestrongly clustered. Numerical experiments are given to demonstrate the efficiency of the presented preconditioner. Mathematical subject classification: 65F10. |
id |
SBMAC-2_e5edd992f736274b193d28faef502762 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022011000300006 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Block triangular preconditioner for static Maxwell equationsMaxwell equationspreconditionerKrylov subspace methodsaddle point systemIn this paper, we explore the block triangular preconditioning techniques applied to the iterative solution of the saddle point linear systems arising from the discretized Maxwell equations. Theoretical analysis shows that all the eigenvalues of the preconditioned matrix arestrongly clustered. Numerical experiments are given to demonstrate the efficiency of the presented preconditioner. Mathematical subject classification: 65F10.Sociedade Brasileira de Matemática Aplicada e Computacional2011-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300006Computational & Applied Mathematics v.30 n.3 2011reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022011000300006info:eu-repo/semantics/openAccessWu,Shi-LiangHuang,Ting-ZhuLi,Liangeng2012-01-06T00:00:00Zoai:scielo:S1807-03022011000300006Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2012-01-06T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Block triangular preconditioner for static Maxwell equations |
title |
Block triangular preconditioner for static Maxwell equations |
spellingShingle |
Block triangular preconditioner for static Maxwell equations Wu,Shi-Liang Maxwell equations preconditioner Krylov subspace method saddle point system |
title_short |
Block triangular preconditioner for static Maxwell equations |
title_full |
Block triangular preconditioner for static Maxwell equations |
title_fullStr |
Block triangular preconditioner for static Maxwell equations |
title_full_unstemmed |
Block triangular preconditioner for static Maxwell equations |
title_sort |
Block triangular preconditioner for static Maxwell equations |
author |
Wu,Shi-Liang |
author_facet |
Wu,Shi-Liang Huang,Ting-Zhu Li,Liang |
author_role |
author |
author2 |
Huang,Ting-Zhu Li,Liang |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Wu,Shi-Liang Huang,Ting-Zhu Li,Liang |
dc.subject.por.fl_str_mv |
Maxwell equations preconditioner Krylov subspace method saddle point system |
topic |
Maxwell equations preconditioner Krylov subspace method saddle point system |
description |
In this paper, we explore the block triangular preconditioning techniques applied to the iterative solution of the saddle point linear systems arising from the discretized Maxwell equations. Theoretical analysis shows that all the eigenvalues of the preconditioned matrix arestrongly clustered. Numerical experiments are given to demonstrate the efficiency of the presented preconditioner. Mathematical subject classification: 65F10. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-03022011000300006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.30 n.3 2011 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890321969152 |