An alternating LHSS preconditioner for saddle point problems

Detalhes bibliográficos
Autor(a) principal: Qingbing,Liu
Data de Publicação: 2012
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000200007
Resumo: In this paper, we present a new alternating local Hermitian and skew-Hermitian splitting preconditioner for solving saddle point problems. The spectral property of the preconditioned matrices is studies in detail. Theoretical results show all eigenvalues of the preconditioned matrices will generate two tight clusters, one is near (0, 0) and the other is near (2, 0) as the iteration parameter tends to zero from positive. Numerical experiments are given to validate the performances of the preconditioner. Mathematical suject classification: Primary: 65F10; Secondary: 65F50.
id SBMAC-2_2d7204add938718109cfa857b4c51797
oai_identifier_str oai:scielo:S1807-03022012000200007
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling An alternating LHSS preconditioner for saddle point problemssaddle point problemsmatrix splittingpreconditionereigenvalue distributionIn this paper, we present a new alternating local Hermitian and skew-Hermitian splitting preconditioner for solving saddle point problems. The spectral property of the preconditioned matrices is studies in detail. Theoretical results show all eigenvalues of the preconditioned matrices will generate two tight clusters, one is near (0, 0) and the other is near (2, 0) as the iteration parameter tends to zero from positive. Numerical experiments are given to validate the performances of the preconditioner. Mathematical suject classification: Primary: 65F10; Secondary: 65F50.Sociedade Brasileira de Matemática Aplicada e Computacional2012-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000200007Computational & Applied Mathematics v.31 n.2 2012reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022012000200007info:eu-repo/semantics/openAccessQingbing,Liueng2012-12-05T00:00:00Zoai:scielo:S1807-03022012000200007Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2012-12-05T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv An alternating LHSS preconditioner for saddle point problems
title An alternating LHSS preconditioner for saddle point problems
spellingShingle An alternating LHSS preconditioner for saddle point problems
Qingbing,Liu
saddle point problems
matrix splitting
preconditioner
eigenvalue distribution
title_short An alternating LHSS preconditioner for saddle point problems
title_full An alternating LHSS preconditioner for saddle point problems
title_fullStr An alternating LHSS preconditioner for saddle point problems
title_full_unstemmed An alternating LHSS preconditioner for saddle point problems
title_sort An alternating LHSS preconditioner for saddle point problems
author Qingbing,Liu
author_facet Qingbing,Liu
author_role author
dc.contributor.author.fl_str_mv Qingbing,Liu
dc.subject.por.fl_str_mv saddle point problems
matrix splitting
preconditioner
eigenvalue distribution
topic saddle point problems
matrix splitting
preconditioner
eigenvalue distribution
description In this paper, we present a new alternating local Hermitian and skew-Hermitian splitting preconditioner for solving saddle point problems. The spectral property of the preconditioned matrices is studies in detail. Theoretical results show all eigenvalues of the preconditioned matrices will generate two tight clusters, one is near (0, 0) and the other is near (2, 0) as the iteration parameter tends to zero from positive. Numerical experiments are given to validate the performances of the preconditioner. Mathematical suject classification: Primary: 65F10; Secondary: 65F50.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000200007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000200007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1807-03022012000200007
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.31 n.2 2012
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734890470866944