Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000200005 |
Resumo: | In this paper, we compute piecewise constant bounds on the solution of mixed nonlinear Volterra-Fredholm integral equations. The enclosures are in the form of intervals which are guaranteed to contain the exact solution considering all round-off and truncation errors, so the width of interval solutions allows us to control the error estimation. An iterative algorithm to improve the accuracy of initial enclosures is given and its convergence are also investigated. Our numerical experiments show that the precision of interval solutions are reasonable in comparison to the classical methods and the obtained conditions and initial enclosure of the proposed algorithm are not restrictive. Mathematical subject classification: 65G20, 45G10, 65G40. |
id |
SBMAC-2_e7a974303de5ba3d9ad221cb3f7b60ef |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022012000200005 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equationsVolterra-Fredholm integral equationsenclosure methodsinterval analysisguaranteed error boundsIn this paper, we compute piecewise constant bounds on the solution of mixed nonlinear Volterra-Fredholm integral equations. The enclosures are in the form of intervals which are guaranteed to contain the exact solution considering all round-off and truncation errors, so the width of interval solutions allows us to control the error estimation. An iterative algorithm to improve the accuracy of initial enclosures is given and its convergence are also investigated. Our numerical experiments show that the precision of interval solutions are reasonable in comparison to the classical methods and the obtained conditions and initial enclosure of the proposed algorithm are not restrictive. Mathematical subject classification: 65G20, 45G10, 65G40.Sociedade Brasileira de Matemática Aplicada e Computacional2012-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000200005Computational & Applied Mathematics v.31 n.2 2012reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022012000200005info:eu-repo/semantics/openAccessYazdani,S.Hadizadeh,M.eng2012-12-05T00:00:00Zoai:scielo:S1807-03022012000200005Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2012-12-05T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations |
title |
Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations |
spellingShingle |
Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations Yazdani,S. Volterra-Fredholm integral equations enclosure methods interval analysis guaranteed error bounds |
title_short |
Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations |
title_full |
Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations |
title_fullStr |
Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations |
title_full_unstemmed |
Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations |
title_sort |
Piecewise constant bounds for the solution of nonlinear Volterra-Fredholm integral equations |
author |
Yazdani,S. |
author_facet |
Yazdani,S. Hadizadeh,M. |
author_role |
author |
author2 |
Hadizadeh,M. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Yazdani,S. Hadizadeh,M. |
dc.subject.por.fl_str_mv |
Volterra-Fredholm integral equations enclosure methods interval analysis guaranteed error bounds |
topic |
Volterra-Fredholm integral equations enclosure methods interval analysis guaranteed error bounds |
description |
In this paper, we compute piecewise constant bounds on the solution of mixed nonlinear Volterra-Fredholm integral equations. The enclosures are in the form of intervals which are guaranteed to contain the exact solution considering all round-off and truncation errors, so the width of interval solutions allows us to control the error estimation. An iterative algorithm to improve the accuracy of initial enclosures is given and its convergence are also investigated. Our numerical experiments show that the precision of interval solutions are reasonable in comparison to the classical methods and the obtained conditions and initial enclosure of the proposed algorithm are not restrictive. Mathematical subject classification: 65G20, 45G10, 65G40. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000200005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022012000200005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-03022012000200005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.31 n.2 2012 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734890467721216 |