Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation

Detalhes bibliográficos
Autor(a) principal: Bazán,Fermin S. Viloche
Data de Publicação: 2005
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000300003
Resumo: Let Pm(z) be a matrix polynomial of degree m whose coefficients At <FONT FACE=Symbol>Î</FONT> Cq×q satisfy a recurrence relation of the form: h kA0+ h k+1A1+...+ h k+m-1Am-1 = h k+m, k > 0, where h k = RZkL <FONT FACE=Symbol>Î</FONT> Cp×q, R <FONT FACE=Symbol>Î</FONT> Cp×n, Z = diag (z1,...,z n) with z i <FONT FACE=Symbol>¹</FONT> z j for i <FONT FACE=Symbol>¹</FONT> j, 0 < |z j| < 1, and L <FONT FACE=Symbol>Î</FONT> Cn×q. The coefficients are not uniquely determined from the recurrence relation but the polynomials are always guaranteed to have n fixed eigenpairs, {z j,l j}, where l j is the jth column of L*. In this paper, we show that the z j's are also the n eigenvalues of an n×n matrix C A; based on this result the sensitivity of the z j's is investigated and bounds for their condition numbers are provided. The main result is that the z j's become relatively insensitive to perturbations in C A provided that the polynomial degree is large enough, the number n is small, and the eigenvalues are close to the unit circle but not extremely close to each other. Numerical results corresponding to a matrix polynomial arising from an application in system theory show that low sensitivity is possible even if the spectrum presents clustered eigenvalues.
id SBMAC-2_f6e17cf4f8b3ed92ecaa7dfd2baf5b88
oai_identifier_str oai:scielo:S1807-03022005000300003
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimationmatrix polynomialsblock companion matricesdeparture from normalityeigenvalue sensitivitycontrollability GramiansLet Pm(z) be a matrix polynomial of degree m whose coefficients At <FONT FACE=Symbol>Î</FONT> Cq×q satisfy a recurrence relation of the form: h kA0+ h k+1A1+...+ h k+m-1Am-1 = h k+m, k > 0, where h k = RZkL <FONT FACE=Symbol>Î</FONT> Cp×q, R <FONT FACE=Symbol>Î</FONT> Cp×n, Z = diag (z1,...,z n) with z i <FONT FACE=Symbol>¹</FONT> z j for i <FONT FACE=Symbol>¹</FONT> j, 0 < |z j| < 1, and L <FONT FACE=Symbol>Î</FONT> Cn×q. The coefficients are not uniquely determined from the recurrence relation but the polynomials are always guaranteed to have n fixed eigenpairs, {z j,l j}, where l j is the jth column of L*. In this paper, we show that the z j's are also the n eigenvalues of an n×n matrix C A; based on this result the sensitivity of the z j's is investigated and bounds for their condition numbers are provided. The main result is that the z j's become relatively insensitive to perturbations in C A provided that the polynomial degree is large enough, the number n is small, and the eigenvalues are close to the unit circle but not extremely close to each other. Numerical results corresponding to a matrix polynomial arising from an application in system theory show that low sensitivity is possible even if the spectrum presents clustered eigenvalues.Sociedade Brasileira de Matemática Aplicada e Computacional2005-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000300003Computational &amp; Applied Mathematics v.24 n.3 2005reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessBazán,Fermin S. Vilocheeng2006-04-20T00:00:00Zoai:scielo:S1807-03022005000300003Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2006-04-20T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
title Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
spellingShingle Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
Bazán,Fermin S. Viloche
matrix polynomials
block companion matrices
departure from normality
eigenvalue sensitivity
controllability Gramians
title_short Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
title_full Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
title_fullStr Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
title_full_unstemmed Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
title_sort Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
author Bazán,Fermin S. Viloche
author_facet Bazán,Fermin S. Viloche
author_role author
dc.contributor.author.fl_str_mv Bazán,Fermin S. Viloche
dc.subject.por.fl_str_mv matrix polynomials
block companion matrices
departure from normality
eigenvalue sensitivity
controllability Gramians
topic matrix polynomials
block companion matrices
departure from normality
eigenvalue sensitivity
controllability Gramians
description Let Pm(z) be a matrix polynomial of degree m whose coefficients At <FONT FACE=Symbol>Î</FONT> Cq×q satisfy a recurrence relation of the form: h kA0+ h k+1A1+...+ h k+m-1Am-1 = h k+m, k > 0, where h k = RZkL <FONT FACE=Symbol>Î</FONT> Cp×q, R <FONT FACE=Symbol>Î</FONT> Cp×n, Z = diag (z1,...,z n) with z i <FONT FACE=Symbol>¹</FONT> z j for i <FONT FACE=Symbol>¹</FONT> j, 0 < |z j| < 1, and L <FONT FACE=Symbol>Î</FONT> Cn×q. The coefficients are not uniquely determined from the recurrence relation but the polynomials are always guaranteed to have n fixed eigenpairs, {z j,l j}, where l j is the jth column of L*. In this paper, we show that the z j's are also the n eigenvalues of an n×n matrix C A; based on this result the sensitivity of the z j's is investigated and bounds for their condition numbers are provided. The main result is that the z j's become relatively insensitive to perturbations in C A provided that the polynomial degree is large enough, the number n is small, and the eigenvalues are close to the unit circle but not extremely close to each other. Numerical results corresponding to a matrix polynomial arising from an application in system theory show that low sensitivity is possible even if the spectrum presents clustered eigenvalues.
publishDate 2005
dc.date.none.fl_str_mv 2005-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000300003
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000300003
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational &amp; Applied Mathematics v.24 n.3 2005
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734889743155200