Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Computational & Applied Mathematics |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000300003 |
Resumo: | Let Pm(z) be a matrix polynomial of degree m whose coefficients At <FONT FACE=Symbol>Î</FONT> Cq×q satisfy a recurrence relation of the form: h kA0+ h k+1A1+...+ h k+m-1Am-1 = h k+m, k > 0, where h k = RZkL <FONT FACE=Symbol>Î</FONT> Cp×q, R <FONT FACE=Symbol>Î</FONT> Cp×n, Z = diag (z1,...,z n) with z i <FONT FACE=Symbol>¹</FONT> z j for i <FONT FACE=Symbol>¹</FONT> j, 0 < |z j| < 1, and L <FONT FACE=Symbol>Î</FONT> Cn×q. The coefficients are not uniquely determined from the recurrence relation but the polynomials are always guaranteed to have n fixed eigenpairs, {z j,l j}, where l j is the jth column of L*. In this paper, we show that the z j's are also the n eigenvalues of an n×n matrix C A; based on this result the sensitivity of the z j's is investigated and bounds for their condition numbers are provided. The main result is that the z j's become relatively insensitive to perturbations in C A provided that the polynomial degree is large enough, the number n is small, and the eigenvalues are close to the unit circle but not extremely close to each other. Numerical results corresponding to a matrix polynomial arising from an application in system theory show that low sensitivity is possible even if the spectrum presents clustered eigenvalues. |
id |
SBMAC-2_f6e17cf4f8b3ed92ecaa7dfd2baf5b88 |
---|---|
oai_identifier_str |
oai:scielo:S1807-03022005000300003 |
network_acronym_str |
SBMAC-2 |
network_name_str |
Computational & Applied Mathematics |
repository_id_str |
|
spelling |
Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimationmatrix polynomialsblock companion matricesdeparture from normalityeigenvalue sensitivitycontrollability GramiansLet Pm(z) be a matrix polynomial of degree m whose coefficients At <FONT FACE=Symbol>Î</FONT> Cq×q satisfy a recurrence relation of the form: h kA0+ h k+1A1+...+ h k+m-1Am-1 = h k+m, k > 0, where h k = RZkL <FONT FACE=Symbol>Î</FONT> Cp×q, R <FONT FACE=Symbol>Î</FONT> Cp×n, Z = diag (z1,...,z n) with z i <FONT FACE=Symbol>¹</FONT> z j for i <FONT FACE=Symbol>¹</FONT> j, 0 < |z j| < 1, and L <FONT FACE=Symbol>Î</FONT> Cn×q. The coefficients are not uniquely determined from the recurrence relation but the polynomials are always guaranteed to have n fixed eigenpairs, {z j,l j}, where l j is the jth column of L*. In this paper, we show that the z j's are also the n eigenvalues of an n×n matrix C A; based on this result the sensitivity of the z j's is investigated and bounds for their condition numbers are provided. The main result is that the z j's become relatively insensitive to perturbations in C A provided that the polynomial degree is large enough, the number n is small, and the eigenvalues are close to the unit circle but not extremely close to each other. Numerical results corresponding to a matrix polynomial arising from an application in system theory show that low sensitivity is possible even if the spectrum presents clustered eigenvalues.Sociedade Brasileira de Matemática Aplicada e Computacional2005-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000300003Computational & Applied Mathematics v.24 n.3 2005reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMACinfo:eu-repo/semantics/openAccessBazán,Fermin S. Vilocheeng2006-04-20T00:00:00Zoai:scielo:S1807-03022005000300003Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2006-04-20T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false |
dc.title.none.fl_str_mv |
Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation |
title |
Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation |
spellingShingle |
Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation Bazán,Fermin S. Viloche matrix polynomials block companion matrices departure from normality eigenvalue sensitivity controllability Gramians |
title_short |
Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation |
title_full |
Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation |
title_fullStr |
Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation |
title_full_unstemmed |
Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation |
title_sort |
Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation |
author |
Bazán,Fermin S. Viloche |
author_facet |
Bazán,Fermin S. Viloche |
author_role |
author |
dc.contributor.author.fl_str_mv |
Bazán,Fermin S. Viloche |
dc.subject.por.fl_str_mv |
matrix polynomials block companion matrices departure from normality eigenvalue sensitivity controllability Gramians |
topic |
matrix polynomials block companion matrices departure from normality eigenvalue sensitivity controllability Gramians |
description |
Let Pm(z) be a matrix polynomial of degree m whose coefficients At <FONT FACE=Symbol>Î</FONT> Cq×q satisfy a recurrence relation of the form: h kA0+ h k+1A1+...+ h k+m-1Am-1 = h k+m, k > 0, where h k = RZkL <FONT FACE=Symbol>Î</FONT> Cp×q, R <FONT FACE=Symbol>Î</FONT> Cp×n, Z = diag (z1,...,z n) with z i <FONT FACE=Symbol>¹</FONT> z j for i <FONT FACE=Symbol>¹</FONT> j, 0 < |z j| < 1, and L <FONT FACE=Symbol>Î</FONT> Cn×q. The coefficients are not uniquely determined from the recurrence relation but the polynomials are always guaranteed to have n fixed eigenpairs, {z j,l j}, where l j is the jth column of L*. In this paper, we show that the z j's are also the n eigenvalues of an n×n matrix C A; based on this result the sensitivity of the z j's is investigated and bounds for their condition numbers are provided. The main result is that the z j's become relatively insensitive to perturbations in C A provided that the polynomial degree is large enough, the number n is small, and the eigenvalues are close to the unit circle but not extremely close to each other. Numerical results corresponding to a matrix polynomial arising from an application in system theory show that low sensitivity is possible even if the spectrum presents clustered eigenvalues. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000300003 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022005000300003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
Computational & Applied Mathematics v.24 n.3 2005 reponame:Computational & Applied Mathematics instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) instacron:SBMAC |
instname_str |
Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
instacron_str |
SBMAC |
institution |
SBMAC |
reponame_str |
Computational & Applied Mathematics |
collection |
Computational & Applied Mathematics |
repository.name.fl_str_mv |
Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC) |
repository.mail.fl_str_mv |
||sbmac@sbmac.org.br |
_version_ |
1754734889743155200 |