SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGES
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista brasileira de medicina do esporte (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300307 |
Resumo: | ABSTRACT Introduction To reduce or avoid injuries during high-intensity sports and help treat the injured part, the method of recognizing biological images of the damaged part is a crucial point of current research. Objective To reduce the damage caused by high-intensity sports and improve the efficiency of injury treatment, this article explores the method of identifying damaged parts in biological imaging of high-intensity sports injuries. Methods A method is proposed to recognize damaged parts of biological images of high-intensity sports injuries based on an improved regional growth algorithm. Results A rough segmented image developed in black and white is obtained with the main body as the objective and background. Based on approximate segmentation, the region growth algorithm is used to accurately recognize the damaged region by improving the selection of the hotspots and the growth rules. Conclusion The recognition accuracy is high, and the recognition time is shorter. The algorithm proposed in this work can improve the precision of recognizing the damaged parts of the biological image of the sports injury and shorten the recognition time. It has the feasibility to determine the damaged parts of sports injuries. Level of evidence II; Therapeutic studies: investigation of treatment results. |
id |
SBMEE-1_852e3a2499bba4ddcf862893e7755715 |
---|---|
oai_identifier_str |
oai:scielo:S1517-86922021000300307 |
network_acronym_str |
SBMEE-1 |
network_name_str |
Revista brasileira de medicina do esporte (Online) |
repository_id_str |
|
spelling |
SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGESSports InjuryRecognitionExercise,high-intensityABSTRACT Introduction To reduce or avoid injuries during high-intensity sports and help treat the injured part, the method of recognizing biological images of the damaged part is a crucial point of current research. Objective To reduce the damage caused by high-intensity sports and improve the efficiency of injury treatment, this article explores the method of identifying damaged parts in biological imaging of high-intensity sports injuries. Methods A method is proposed to recognize damaged parts of biological images of high-intensity sports injuries based on an improved regional growth algorithm. Results A rough segmented image developed in black and white is obtained with the main body as the objective and background. Based on approximate segmentation, the region growth algorithm is used to accurately recognize the damaged region by improving the selection of the hotspots and the growth rules. Conclusion The recognition accuracy is high, and the recognition time is shorter. The algorithm proposed in this work can improve the precision of recognizing the damaged parts of the biological image of the sports injury and shorten the recognition time. It has the feasibility to determine the damaged parts of sports injuries. Level of evidence II; Therapeutic studies: investigation of treatment results.Sociedade Brasileira de Medicina do Exercício e do Esporte2021-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300307Revista Brasileira de Medicina do Esporte v.27 n.3 2021reponame:Revista brasileira de medicina do esporte (Online)instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)instacron:SBMEE10.1590/1517-8692202127032021_0079info:eu-repo/semantics/openAccessZhu,Guozhengeng2021-07-21T00:00:00Zoai:scielo:S1517-86922021000300307Revistahttp://www.scielo.br/rbmeONGhttps://old.scielo.br/oai/scielo-oai.php||revista@medicinadoesporte.org.br1806-99401517-8692opendoar:2021-07-21T00:00Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)false |
dc.title.none.fl_str_mv |
SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGES |
title |
SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGES |
spellingShingle |
SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGES Zhu,Guozheng Sports Injury Recognition Exercise,high-intensity |
title_short |
SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGES |
title_full |
SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGES |
title_fullStr |
SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGES |
title_full_unstemmed |
SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGES |
title_sort |
SIMULATION FOR DAMAGED PARTS RECOGNITION OF SPORTS INJURY BIOLOGICAL IMAGES |
author |
Zhu,Guozheng |
author_facet |
Zhu,Guozheng |
author_role |
author |
dc.contributor.author.fl_str_mv |
Zhu,Guozheng |
dc.subject.por.fl_str_mv |
Sports Injury Recognition Exercise,high-intensity |
topic |
Sports Injury Recognition Exercise,high-intensity |
description |
ABSTRACT Introduction To reduce or avoid injuries during high-intensity sports and help treat the injured part, the method of recognizing biological images of the damaged part is a crucial point of current research. Objective To reduce the damage caused by high-intensity sports and improve the efficiency of injury treatment, this article explores the method of identifying damaged parts in biological imaging of high-intensity sports injuries. Methods A method is proposed to recognize damaged parts of biological images of high-intensity sports injuries based on an improved regional growth algorithm. Results A rough segmented image developed in black and white is obtained with the main body as the objective and background. Based on approximate segmentation, the region growth algorithm is used to accurately recognize the damaged region by improving the selection of the hotspots and the growth rules. Conclusion The recognition accuracy is high, and the recognition time is shorter. The algorithm proposed in this work can improve the precision of recognizing the damaged parts of the biological image of the sports injury and shorten the recognition time. It has the feasibility to determine the damaged parts of sports injuries. Level of evidence II; Therapeutic studies: investigation of treatment results. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300307 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922021000300307 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1517-8692202127032021_0079 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Medicina do Exercício e do Esporte |
publisher.none.fl_str_mv |
Sociedade Brasileira de Medicina do Exercício e do Esporte |
dc.source.none.fl_str_mv |
Revista Brasileira de Medicina do Esporte v.27 n.3 2021 reponame:Revista brasileira de medicina do esporte (Online) instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE) instacron:SBMEE |
instname_str |
Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE) |
instacron_str |
SBMEE |
institution |
SBMEE |
reponame_str |
Revista brasileira de medicina do esporte (Online) |
collection |
Revista brasileira de medicina do esporte (Online) |
repository.name.fl_str_mv |
Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE) |
repository.mail.fl_str_mv |
||revista@medicinadoesporte.org.br |
_version_ |
1752122237642604544 |