RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista brasileira de medicina do esporte (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922019000200157 |
Resumo: | ABSTRACT Introduction: Resistance exercise, particularly strength training, has been progressively gaining more and more followers worldwide. Despite a considerable increase in the amount of research and literature available on this topic, resistance training is undergoing important developments. Anaerobic metabolism, which characterizes resistance training, enhances the ischemic process and blood reperfusion, thereby generating reactive oxygen species (ROS). The imbalance between the production of free radicals and antioxidant defenses may induce oxidative stress with subsequent protein oxidation, lipid peroxidation, DNA damage in several cells, and other effects. This process may be intensified at rest because the O2 deficit is counteracted by a process known as excess post-exercise oxygen consumption. Objective: To analyze the effects of ROS in strength training on the DNA of human lymphocyte, biomarkers of lipid damage (TBARS) and metabolism (triglycerides, protein, glycose, albumin and urea). Methods: Comet assay involving a count of 100 cells, which were divided into five classes of damage (no damage = 0, maximum damage = 4), thereby constituting an indication of DNA damage, and the micronucleus test, where the cell samples were centrifuged at 1000-1500 RPM for ten minutes at room temperature for the micronuclei analysis. Results: An elevation in triglyceride concentrations was observed 5h post-exercise (p=0.018), probably due to nutrition. There were no significant differences in the other biochemical parameters. In terms of the DNA damage measured by the Comet assay and micronucleus test, no statistical differences were observed until 5h post-exercise. Conclusion: The proposed training session did not cause oxidative or genotoxic damage in trained individuals under the proposed conditions. Level of Evidence II; Prognostic studies-Investigation of the effect of patient characteristics on the disease outcome. |
id |
SBMEE-1_ced262718b001c9a2b3243c13d88adb7 |
---|---|
oai_identifier_str |
oai:scielo:S1517-86922019000200157 |
network_acronym_str |
SBMEE-1 |
network_name_str |
Revista brasileira de medicina do esporte (Online) |
repository_id_str |
|
spelling |
RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALSResistance trainingDNA damageGenotoxicityComet assayABSTRACT Introduction: Resistance exercise, particularly strength training, has been progressively gaining more and more followers worldwide. Despite a considerable increase in the amount of research and literature available on this topic, resistance training is undergoing important developments. Anaerobic metabolism, which characterizes resistance training, enhances the ischemic process and blood reperfusion, thereby generating reactive oxygen species (ROS). The imbalance between the production of free radicals and antioxidant defenses may induce oxidative stress with subsequent protein oxidation, lipid peroxidation, DNA damage in several cells, and other effects. This process may be intensified at rest because the O2 deficit is counteracted by a process known as excess post-exercise oxygen consumption. Objective: To analyze the effects of ROS in strength training on the DNA of human lymphocyte, biomarkers of lipid damage (TBARS) and metabolism (triglycerides, protein, glycose, albumin and urea). Methods: Comet assay involving a count of 100 cells, which were divided into five classes of damage (no damage = 0, maximum damage = 4), thereby constituting an indication of DNA damage, and the micronucleus test, where the cell samples were centrifuged at 1000-1500 RPM for ten minutes at room temperature for the micronuclei analysis. Results: An elevation in triglyceride concentrations was observed 5h post-exercise (p=0.018), probably due to nutrition. There were no significant differences in the other biochemical parameters. In terms of the DNA damage measured by the Comet assay and micronucleus test, no statistical differences were observed until 5h post-exercise. Conclusion: The proposed training session did not cause oxidative or genotoxic damage in trained individuals under the proposed conditions. Level of Evidence II; Prognostic studies-Investigation of the effect of patient characteristics on the disease outcome.Sociedade Brasileira de Medicina do Exercício e do Esporte2019-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922019000200157Revista Brasileira de Medicina do Esporte v.25 n.2 2019reponame:Revista brasileira de medicina do esporte (Online)instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)instacron:SBMEE10.1590/1517-869220192502178893info:eu-repo/semantics/openAccessTagliari,Nelson JoãoSiqueira,Luciano de OliveiraSoares,Jorge Frederico PintoManfredini,VanusaReis,Victor Machadoeng2019-04-09T00:00:00Zoai:scielo:S1517-86922019000200157Revistahttp://www.scielo.br/rbmeONGhttps://old.scielo.br/oai/scielo-oai.php||revista@medicinadoesporte.org.br1806-99401517-8692opendoar:2019-04-09T00:00Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE)false |
dc.title.none.fl_str_mv |
RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALS |
title |
RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALS |
spellingShingle |
RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALS Tagliari,Nelson João Resistance training DNA damage Genotoxicity Comet assay |
title_short |
RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALS |
title_full |
RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALS |
title_fullStr |
RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALS |
title_full_unstemmed |
RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALS |
title_sort |
RESISTANCE EXERCISE PROTOCOL DOES NOT CAUSE ACUTE GENOTOXIC EFFECTS IN TRAINED INDIVIDUALS |
author |
Tagliari,Nelson João |
author_facet |
Tagliari,Nelson João Siqueira,Luciano de Oliveira Soares,Jorge Frederico Pinto Manfredini,Vanusa Reis,Victor Machado |
author_role |
author |
author2 |
Siqueira,Luciano de Oliveira Soares,Jorge Frederico Pinto Manfredini,Vanusa Reis,Victor Machado |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Tagliari,Nelson João Siqueira,Luciano de Oliveira Soares,Jorge Frederico Pinto Manfredini,Vanusa Reis,Victor Machado |
dc.subject.por.fl_str_mv |
Resistance training DNA damage Genotoxicity Comet assay |
topic |
Resistance training DNA damage Genotoxicity Comet assay |
description |
ABSTRACT Introduction: Resistance exercise, particularly strength training, has been progressively gaining more and more followers worldwide. Despite a considerable increase in the amount of research and literature available on this topic, resistance training is undergoing important developments. Anaerobic metabolism, which characterizes resistance training, enhances the ischemic process and blood reperfusion, thereby generating reactive oxygen species (ROS). The imbalance between the production of free radicals and antioxidant defenses may induce oxidative stress with subsequent protein oxidation, lipid peroxidation, DNA damage in several cells, and other effects. This process may be intensified at rest because the O2 deficit is counteracted by a process known as excess post-exercise oxygen consumption. Objective: To analyze the effects of ROS in strength training on the DNA of human lymphocyte, biomarkers of lipid damage (TBARS) and metabolism (triglycerides, protein, glycose, albumin and urea). Methods: Comet assay involving a count of 100 cells, which were divided into five classes of damage (no damage = 0, maximum damage = 4), thereby constituting an indication of DNA damage, and the micronucleus test, where the cell samples were centrifuged at 1000-1500 RPM for ten minutes at room temperature for the micronuclei analysis. Results: An elevation in triglyceride concentrations was observed 5h post-exercise (p=0.018), probably due to nutrition. There were no significant differences in the other biochemical parameters. In terms of the DNA damage measured by the Comet assay and micronucleus test, no statistical differences were observed until 5h post-exercise. Conclusion: The proposed training session did not cause oxidative or genotoxic damage in trained individuals under the proposed conditions. Level of Evidence II; Prognostic studies-Investigation of the effect of patient characteristics on the disease outcome. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922019000200157 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1517-86922019000200157 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1517-869220192502178893 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Medicina do Exercício e do Esporte |
publisher.none.fl_str_mv |
Sociedade Brasileira de Medicina do Exercício e do Esporte |
dc.source.none.fl_str_mv |
Revista Brasileira de Medicina do Esporte v.25 n.2 2019 reponame:Revista brasileira de medicina do esporte (Online) instname:Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE) instacron:SBMEE |
instname_str |
Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE) |
instacron_str |
SBMEE |
institution |
SBMEE |
reponame_str |
Revista brasileira de medicina do esporte (Online) |
collection |
Revista brasileira de medicina do esporte (Online) |
repository.name.fl_str_mv |
Revista brasileira de medicina do esporte (Online) - Sociedade Brasileira de Medicina do Exercício e do Esporte (SBMEE) |
repository.mail.fl_str_mv |
||revista@medicinadoesporte.org.br |
_version_ |
1752122236698886144 |