MANNGA: A Robust Method for Gap Filling Meteorological Data

Detalhes bibliográficos
Autor(a) principal: Ventura,Thiago Meirelles
Data de Publicação: 2019
Outros Autores: Martins,Claudia Aparecida, Figueiredo,Josiel Maimone de, Oliveira,Allan Gonçalves de, Montanher,Johnata Rodrigo Pinheiro
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Brasileira de Meteorologia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315
Resumo: Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.
id SBMET-1_fc46c2b7b6479da9cedc373c8374dc6f
oai_identifier_str oai:scielo:S0102-77862019000200315
network_acronym_str SBMET-1
network_name_str Revista Brasileira de Meteorologia (Online)
repository_id_str
spelling MANNGA: A Robust Method for Gap Filling Meteorological Datamultivariate dataartificial neural networkgenetic algorithmopen source softwareAbstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.Sociedade Brasileira de Meteorologia2019-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315Revista Brasileira de Meteorologia v.34 n.2 2019reponame:Revista Brasileira de Meteorologia (Online)instname:Sociedade Brasileira de Meteorologia (SBMET)instacron:SBMET10.1590/0102-77863340035info:eu-repo/semantics/openAccessVentura,Thiago MeirellesMartins,Claudia AparecidaFigueiredo,Josiel Maimone deOliveira,Allan Gonçalves deMontanher,Johnata Rodrigo Pinheiroeng2019-08-22T00:00:00Zoai:scielo:S0102-77862019000200315Revistahttp://www.rbmet.org.br/port/index.phpONGhttps://old.scielo.br/oai/scielo-oai.php||rbmet@rbmet.org.br1982-43510102-7786opendoar:2019-08-22T00:00Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET)false
dc.title.none.fl_str_mv MANNGA: A Robust Method for Gap Filling Meteorological Data
title MANNGA: A Robust Method for Gap Filling Meteorological Data
spellingShingle MANNGA: A Robust Method for Gap Filling Meteorological Data
Ventura,Thiago Meirelles
multivariate data
artificial neural network
genetic algorithm
open source software
title_short MANNGA: A Robust Method for Gap Filling Meteorological Data
title_full MANNGA: A Robust Method for Gap Filling Meteorological Data
title_fullStr MANNGA: A Robust Method for Gap Filling Meteorological Data
title_full_unstemmed MANNGA: A Robust Method for Gap Filling Meteorological Data
title_sort MANNGA: A Robust Method for Gap Filling Meteorological Data
author Ventura,Thiago Meirelles
author_facet Ventura,Thiago Meirelles
Martins,Claudia Aparecida
Figueiredo,Josiel Maimone de
Oliveira,Allan Gonçalves de
Montanher,Johnata Rodrigo Pinheiro
author_role author
author2 Martins,Claudia Aparecida
Figueiredo,Josiel Maimone de
Oliveira,Allan Gonçalves de
Montanher,Johnata Rodrigo Pinheiro
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ventura,Thiago Meirelles
Martins,Claudia Aparecida
Figueiredo,Josiel Maimone de
Oliveira,Allan Gonçalves de
Montanher,Johnata Rodrigo Pinheiro
dc.subject.por.fl_str_mv multivariate data
artificial neural network
genetic algorithm
open source software
topic multivariate data
artificial neural network
genetic algorithm
open source software
description Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0102-77863340035
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Meteorologia
publisher.none.fl_str_mv Sociedade Brasileira de Meteorologia
dc.source.none.fl_str_mv Revista Brasileira de Meteorologia v.34 n.2 2019
reponame:Revista Brasileira de Meteorologia (Online)
instname:Sociedade Brasileira de Meteorologia (SBMET)
instacron:SBMET
instname_str Sociedade Brasileira de Meteorologia (SBMET)
instacron_str SBMET
institution SBMET
reponame_str Revista Brasileira de Meteorologia (Online)
collection Revista Brasileira de Meteorologia (Online)
repository.name.fl_str_mv Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET)
repository.mail.fl_str_mv ||rbmet@rbmet.org.br
_version_ 1752122085887442944