MANNGA: A Robust Method for Gap Filling Meteorological Data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Brasileira de Meteorologia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315 |
Resumo: | Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language. |
id |
SBMET-1_fc46c2b7b6479da9cedc373c8374dc6f |
---|---|
oai_identifier_str |
oai:scielo:S0102-77862019000200315 |
network_acronym_str |
SBMET-1 |
network_name_str |
Revista Brasileira de Meteorologia (Online) |
repository_id_str |
|
spelling |
MANNGA: A Robust Method for Gap Filling Meteorological Datamultivariate dataartificial neural networkgenetic algorithmopen source softwareAbstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language.Sociedade Brasileira de Meteorologia2019-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315Revista Brasileira de Meteorologia v.34 n.2 2019reponame:Revista Brasileira de Meteorologia (Online)instname:Sociedade Brasileira de Meteorologia (SBMET)instacron:SBMET10.1590/0102-77863340035info:eu-repo/semantics/openAccessVentura,Thiago MeirellesMartins,Claudia AparecidaFigueiredo,Josiel Maimone deOliveira,Allan Gonçalves deMontanher,Johnata Rodrigo Pinheiroeng2019-08-22T00:00:00Zoai:scielo:S0102-77862019000200315Revistahttp://www.rbmet.org.br/port/index.phpONGhttps://old.scielo.br/oai/scielo-oai.php||rbmet@rbmet.org.br1982-43510102-7786opendoar:2019-08-22T00:00Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET)false |
dc.title.none.fl_str_mv |
MANNGA: A Robust Method for Gap Filling Meteorological Data |
title |
MANNGA: A Robust Method for Gap Filling Meteorological Data |
spellingShingle |
MANNGA: A Robust Method for Gap Filling Meteorological Data Ventura,Thiago Meirelles multivariate data artificial neural network genetic algorithm open source software |
title_short |
MANNGA: A Robust Method for Gap Filling Meteorological Data |
title_full |
MANNGA: A Robust Method for Gap Filling Meteorological Data |
title_fullStr |
MANNGA: A Robust Method for Gap Filling Meteorological Data |
title_full_unstemmed |
MANNGA: A Robust Method for Gap Filling Meteorological Data |
title_sort |
MANNGA: A Robust Method for Gap Filling Meteorological Data |
author |
Ventura,Thiago Meirelles |
author_facet |
Ventura,Thiago Meirelles Martins,Claudia Aparecida Figueiredo,Josiel Maimone de Oliveira,Allan Gonçalves de Montanher,Johnata Rodrigo Pinheiro |
author_role |
author |
author2 |
Martins,Claudia Aparecida Figueiredo,Josiel Maimone de Oliveira,Allan Gonçalves de Montanher,Johnata Rodrigo Pinheiro |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Ventura,Thiago Meirelles Martins,Claudia Aparecida Figueiredo,Josiel Maimone de Oliveira,Allan Gonçalves de Montanher,Johnata Rodrigo Pinheiro |
dc.subject.por.fl_str_mv |
multivariate data artificial neural network genetic algorithm open source software |
topic |
multivariate data artificial neural network genetic algorithm open source software |
description |
Abstract This paper presents Mannga (Multiple variables with Artificial Neural Network and Genetic Algorithm), a method designed for gap filling meteorological data. The main approach is to estimate the missing data based on values of other meteorological variables measured at the same time in the same local, since the meteorological variables are strongly related. Experimental tests showed the performance of Mannga compared with other two methods typically used by researches in this area. Good results were achieved, with high accuracy even for sequential failures, which is a big challenge for researchers. The core advantages of Mannga are the flexibility of handling different types of meteorological data, the ability of select the best variables to assist the gap filling and the capacity to deal with sequential failures. Moreover, the method is available to public use with the Java programming language. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-77862019000200315 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0102-77863340035 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Meteorologia |
publisher.none.fl_str_mv |
Sociedade Brasileira de Meteorologia |
dc.source.none.fl_str_mv |
Revista Brasileira de Meteorologia v.34 n.2 2019 reponame:Revista Brasileira de Meteorologia (Online) instname:Sociedade Brasileira de Meteorologia (SBMET) instacron:SBMET |
instname_str |
Sociedade Brasileira de Meteorologia (SBMET) |
instacron_str |
SBMET |
institution |
SBMET |
reponame_str |
Revista Brasileira de Meteorologia (Online) |
collection |
Revista Brasileira de Meteorologia (Online) |
repository.name.fl_str_mv |
Revista Brasileira de Meteorologia (Online) - Sociedade Brasileira de Meteorologia (SBMET) |
repository.mail.fl_str_mv |
||rbmet@rbmet.org.br |
_version_ |
1752122085887442944 |