Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate

Detalhes bibliográficos
Autor(a) principal: Garcia,Marcos E. C.
Data de Publicação: 2022
Outros Autores: Oliveira,Rodrigo M. S. de, Rodrigues,Nilton R. N. M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Microwaves. Optoelectronics and Electromagnetic Applications
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742022000100011
Resumo: Abstract Semi-analytical equations are developed for aiding the process of designing terahertz graphene-based rectangular dipole antennas lying on glass substrates. It directly provides the dipole length required for obtaining resonance at a desired frequency since antenna width and graphene chemical potential are known. By using the finite-difference time-domain (FDTD) method, a large number of computational simulations were performed considering several combinations of antenna dimensions and chemical potential values. The simulation results were used along with graphene electrostatic scaling law combined with the least squares method to optimize the formulation coefficients. With the optimized coefficients, we obtain very satisfying accuracy levels. In the frequency range from 0.5 THz to 3.0 THz, the average relative absolute error is 1.50%, with maximum relative absolute error of 6.77%.
id SBMO-1_a740cecae42386fd90eb1c853757bd80
oai_identifier_str oai:scielo:S2179-10742022000100011
network_acronym_str SBMO-1
network_name_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository_id_str
spelling Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass SubstrateGraphene Dipole AntennaEngineering DesignResonance FrequencyTerahertz RadiationAbstract Semi-analytical equations are developed for aiding the process of designing terahertz graphene-based rectangular dipole antennas lying on glass substrates. It directly provides the dipole length required for obtaining resonance at a desired frequency since antenna width and graphene chemical potential are known. By using the finite-difference time-domain (FDTD) method, a large number of computational simulations were performed considering several combinations of antenna dimensions and chemical potential values. The simulation results were used along with graphene electrostatic scaling law combined with the least squares method to optimize the formulation coefficients. With the optimized coefficients, we obtain very satisfying accuracy levels. In the frequency range from 0.5 THz to 3.0 THz, the average relative absolute error is 1.50%, with maximum relative absolute error of 6.77%.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2022-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742022000100011Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.21 n.1 2022reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742022v21i11335info:eu-repo/semantics/openAccessGarcia,Marcos E. C.Oliveira,Rodrigo M. S. deRodrigues,Nilton R. N. M.eng2022-03-07T00:00:00Zoai:scielo:S2179-10742022000100011Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2022-03-07T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false
dc.title.none.fl_str_mv Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate
title Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate
spellingShingle Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate
Garcia,Marcos E. C.
Graphene Dipole Antenna
Engineering Design
Resonance Frequency
Terahertz Radiation
title_short Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate
title_full Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate
title_fullStr Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate
title_full_unstemmed Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate
title_sort Semi-analytical Equations for Designing Terahertz Graphene Dipole Antennas on Glass Substrate
author Garcia,Marcos E. C.
author_facet Garcia,Marcos E. C.
Oliveira,Rodrigo M. S. de
Rodrigues,Nilton R. N. M.
author_role author
author2 Oliveira,Rodrigo M. S. de
Rodrigues,Nilton R. N. M.
author2_role author
author
dc.contributor.author.fl_str_mv Garcia,Marcos E. C.
Oliveira,Rodrigo M. S. de
Rodrigues,Nilton R. N. M.
dc.subject.por.fl_str_mv Graphene Dipole Antenna
Engineering Design
Resonance Frequency
Terahertz Radiation
topic Graphene Dipole Antenna
Engineering Design
Resonance Frequency
Terahertz Radiation
description Abstract Semi-analytical equations are developed for aiding the process of designing terahertz graphene-based rectangular dipole antennas lying on glass substrates. It directly provides the dipole length required for obtaining resonance at a desired frequency since antenna width and graphene chemical potential are known. By using the finite-difference time-domain (FDTD) method, a large number of computational simulations were performed considering several combinations of antenna dimensions and chemical potential values. The simulation results were used along with graphene electrostatic scaling law combined with the least squares method to optimize the formulation coefficients. With the optimized coefficients, we obtain very satisfying accuracy levels. In the frequency range from 0.5 THz to 3.0 THz, the average relative absolute error is 1.50%, with maximum relative absolute error of 6.77%.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742022000100011
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742022000100011
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2179-10742022v21i11335
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
publisher.none.fl_str_mv Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo
dc.source.none.fl_str_mv Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.21 n.1 2022
reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications
instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron:SBMO
instname_str Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
instacron_str SBMO
institution SBMO
reponame_str Journal of Microwaves. Optoelectronics and Electromagnetic Applications
collection Journal of Microwaves. Optoelectronics and Electromagnetic Applications
repository.name.fl_str_mv Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)
repository.mail.fl_str_mv ||editor_jmoe@sbmo.org.br
_version_ 1752122127080751104