A High Gain Super Wideband Metamaterial Based Antenna
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000200248 |
Resumo: | Abstract The paper proposes a high gain, metamaterial based super wideband (SWB) antenna. The SWB antenna has two inverted U slots which are responsible for two notches at 3.5 GHz and 5.5 GHz frequencies. A flower-shaped slot is etched from the radiator to obtain the SWB characteristics. The super wideband antenna has dimensions of 30×35 ×1.5 mm3 with FR4 substrate. The antenna has a frequency bandwidth of 3.1 GHz - 15 GHz for S11 < -10dB. A metamaterial unit cell is designed and simulated for permittivity and permeability characteristics. This shows a negative refractive index in the band of 2.4 GHz to 8 GHz and 8.2 GHz to 9 GHz. A 3×3 array of metamaterial cells is used as a superstrate for the improvement of the gain characteristics. The fabricated prototype SWB antenna with superstrate has measured frequency bandwidth 3.1-15 GHz with notched bands at 3.5 GHz and 5.5 GHz. The experimental and simulated results are in line with each other. |
id |
SBMO-1_e1030ad84ef69b3c2f0fae4fdae96e3c |
---|---|
oai_identifier_str |
oai:scielo:S2179-10742021000200248 |
network_acronym_str |
SBMO-1 |
network_name_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository_id_str |
|
spelling |
A High Gain Super Wideband Metamaterial Based AntennaGainMetamaterialNotched bandSuper wideband antennaAbstract The paper proposes a high gain, metamaterial based super wideband (SWB) antenna. The SWB antenna has two inverted U slots which are responsible for two notches at 3.5 GHz and 5.5 GHz frequencies. A flower-shaped slot is etched from the radiator to obtain the SWB characteristics. The super wideband antenna has dimensions of 30×35 ×1.5 mm3 with FR4 substrate. The antenna has a frequency bandwidth of 3.1 GHz - 15 GHz for S11 < -10dB. A metamaterial unit cell is designed and simulated for permittivity and permeability characteristics. This shows a negative refractive index in the band of 2.4 GHz to 8 GHz and 8.2 GHz to 9 GHz. A 3×3 array of metamaterial cells is used as a superstrate for the improvement of the gain characteristics. The fabricated prototype SWB antenna with superstrate has measured frequency bandwidth 3.1-15 GHz with notched bands at 3.5 GHz and 5.5 GHz. The experimental and simulated results are in line with each other.Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo2021-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000200248Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.2 2021reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applicationsinstname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)instacron:SBMO10.1590/2179-10742021v20i21147info:eu-repo/semantics/openAccessAggarwal,IshitaPandey,SujataTripathy,Malay Ranjaneng2021-06-15T00:00:00Zoai:scielo:S2179-10742021000200248Revistahttp://www.jmoe.org/index.php/jmoe/indexONGhttps://old.scielo.br/oai/scielo-oai.php||editor_jmoe@sbmo.org.br2179-10742179-1074opendoar:2021-06-15T00:00Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO)false |
dc.title.none.fl_str_mv |
A High Gain Super Wideband Metamaterial Based Antenna |
title |
A High Gain Super Wideband Metamaterial Based Antenna |
spellingShingle |
A High Gain Super Wideband Metamaterial Based Antenna Aggarwal,Ishita Gain Metamaterial Notched band Super wideband antenna |
title_short |
A High Gain Super Wideband Metamaterial Based Antenna |
title_full |
A High Gain Super Wideband Metamaterial Based Antenna |
title_fullStr |
A High Gain Super Wideband Metamaterial Based Antenna |
title_full_unstemmed |
A High Gain Super Wideband Metamaterial Based Antenna |
title_sort |
A High Gain Super Wideband Metamaterial Based Antenna |
author |
Aggarwal,Ishita |
author_facet |
Aggarwal,Ishita Pandey,Sujata Tripathy,Malay Ranjan |
author_role |
author |
author2 |
Pandey,Sujata Tripathy,Malay Ranjan |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Aggarwal,Ishita Pandey,Sujata Tripathy,Malay Ranjan |
dc.subject.por.fl_str_mv |
Gain Metamaterial Notched band Super wideband antenna |
topic |
Gain Metamaterial Notched band Super wideband antenna |
description |
Abstract The paper proposes a high gain, metamaterial based super wideband (SWB) antenna. The SWB antenna has two inverted U slots which are responsible for two notches at 3.5 GHz and 5.5 GHz frequencies. A flower-shaped slot is etched from the radiator to obtain the SWB characteristics. The super wideband antenna has dimensions of 30×35 ×1.5 mm3 with FR4 substrate. The antenna has a frequency bandwidth of 3.1 GHz - 15 GHz for S11 < -10dB. A metamaterial unit cell is designed and simulated for permittivity and permeability characteristics. This shows a negative refractive index in the band of 2.4 GHz to 8 GHz and 8.2 GHz to 9 GHz. A 3×3 array of metamaterial cells is used as a superstrate for the improvement of the gain characteristics. The fabricated prototype SWB antenna with superstrate has measured frequency bandwidth 3.1-15 GHz with notched bands at 3.5 GHz and 5.5 GHz. The experimental and simulated results are in line with each other. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000200248 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2179-10742021000200248 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2179-10742021v20i21147 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
publisher.none.fl_str_mv |
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo |
dc.source.none.fl_str_mv |
Journal of Microwaves, Optoelectronics and Electromagnetic Applications v.20 n.2 2021 reponame:Journal of Microwaves. Optoelectronics and Electromagnetic Applications instname:Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) instacron:SBMO |
instname_str |
Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
instacron_str |
SBMO |
institution |
SBMO |
reponame_str |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
collection |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications |
repository.name.fl_str_mv |
Journal of Microwaves. Optoelectronics and Electromagnetic Applications - Sociedade Brasileira de Microondas e Optoeletrônica (SBMO) |
repository.mail.fl_str_mv |
||editor_jmoe@sbmo.org.br |
_version_ |
1752122127001059328 |