Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry

Detalhes bibliográficos
Autor(a) principal: Assadian,Farah
Data de Publicação: 2017
Outros Autores: Niazi,Ali
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of the Brazilian Chemical Society (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532017001202291
Resumo: Dispersive liquid-liquid microextraction (DLLME) and spectrofluorimetry, coupled with chemometrics methods, are proposed in this work for the pre-concentration and determination of ofloxacin concentration in spiked human urine. Chloroform and acetonitrile were selected as the extraction and dispersive solvents by the one-variable-at-a-time process. The Box-Behnken design was used to optimize the other variables, including the volume of extraction and dispersion solvents, solution pH, and ionic strength. A linear calibration curve was obtained in the 5.0-120.0 ng mL-1 range under optimal conditions with a detection limit of 1.61 ng mL-1 and correlation coefficient of 0.9948. A relative standard deviation (RSD) of 1.13% was obtained for seven consecutive replicates. Parallel factor analysis (PARAFAC) and partial least square (PLS) modeling were applied for the multivariate calibration of the spectrofluorimetric data. To pre-process the data matrices and predict the model results, the orthogonal signal correction (OSC) was used, and the analysis results were statistically compared. The methods accuracy values for ofloxacin determination, evaluated by the root mean square errors of prediction (RMSEP) and relative standard error of prediction (RSEP), were 0.82 and 1.12 using OSC-PLS, and 0.31 and 0.42 using OSC-PARAFAC models, respectively. Ofloxacin can be reliably determined in human urine samples through the proposed procedure, according to the results.
id SBQ-2_0705cadc7b5899b220f733a3bce94f04
oai_identifier_str oai:scielo:S0103-50532017001202291
network_acronym_str SBQ-2
network_name_str Journal of the Brazilian Chemical Society (Online)
repository_id_str
spelling Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetryofloxacindispersive liquid-liquid microextractionspectrofluorimetryBox-Behnken designOSC-PARAFACDispersive liquid-liquid microextraction (DLLME) and spectrofluorimetry, coupled with chemometrics methods, are proposed in this work for the pre-concentration and determination of ofloxacin concentration in spiked human urine. Chloroform and acetonitrile were selected as the extraction and dispersive solvents by the one-variable-at-a-time process. The Box-Behnken design was used to optimize the other variables, including the volume of extraction and dispersion solvents, solution pH, and ionic strength. A linear calibration curve was obtained in the 5.0-120.0 ng mL-1 range under optimal conditions with a detection limit of 1.61 ng mL-1 and correlation coefficient of 0.9948. A relative standard deviation (RSD) of 1.13% was obtained for seven consecutive replicates. Parallel factor analysis (PARAFAC) and partial least square (PLS) modeling were applied for the multivariate calibration of the spectrofluorimetric data. To pre-process the data matrices and predict the model results, the orthogonal signal correction (OSC) was used, and the analysis results were statistically compared. The methods accuracy values for ofloxacin determination, evaluated by the root mean square errors of prediction (RMSEP) and relative standard error of prediction (RSEP), were 0.82 and 1.12 using OSC-PLS, and 0.31 and 0.42 using OSC-PARAFAC models, respectively. Ofloxacin can be reliably determined in human urine samples through the proposed procedure, according to the results.Sociedade Brasileira de Química2017-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532017001202291Journal of the Brazilian Chemical Society v.28 n.12 2017reponame:Journal of the Brazilian Chemical Society (Online)instname:Sociedade Brasileira de Química (SBQ)instacron:SBQ10.21577/0103-5053.20170080info:eu-repo/semantics/openAccessAssadian,FarahNiazi,Alieng2017-11-06T00:00:00Zoai:scielo:S0103-50532017001202291Revistahttp://jbcs.sbq.org.brONGhttps://old.scielo.br/oai/scielo-oai.php||office@jbcs.sbq.org.br1678-47900103-5053opendoar:2017-11-06T00:00Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)false
dc.title.none.fl_str_mv Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry
title Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry
spellingShingle Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry
Assadian,Farah
ofloxacin
dispersive liquid-liquid microextraction
spectrofluorimetry
Box-Behnken design
OSC-PARAFAC
title_short Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry
title_full Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry
title_fullStr Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry
title_full_unstemmed Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry
title_sort Application of Response Surface Modeling and Chemometrics Methods for the Determination of Ofloxacin in Human Urine Using Dispersive Liquid-Liquid Microextraction Combined with Spectrofluorimetry
author Assadian,Farah
author_facet Assadian,Farah
Niazi,Ali
author_role author
author2 Niazi,Ali
author2_role author
dc.contributor.author.fl_str_mv Assadian,Farah
Niazi,Ali
dc.subject.por.fl_str_mv ofloxacin
dispersive liquid-liquid microextraction
spectrofluorimetry
Box-Behnken design
OSC-PARAFAC
topic ofloxacin
dispersive liquid-liquid microextraction
spectrofluorimetry
Box-Behnken design
OSC-PARAFAC
description Dispersive liquid-liquid microextraction (DLLME) and spectrofluorimetry, coupled with chemometrics methods, are proposed in this work for the pre-concentration and determination of ofloxacin concentration in spiked human urine. Chloroform and acetonitrile were selected as the extraction and dispersive solvents by the one-variable-at-a-time process. The Box-Behnken design was used to optimize the other variables, including the volume of extraction and dispersion solvents, solution pH, and ionic strength. A linear calibration curve was obtained in the 5.0-120.0 ng mL-1 range under optimal conditions with a detection limit of 1.61 ng mL-1 and correlation coefficient of 0.9948. A relative standard deviation (RSD) of 1.13% was obtained for seven consecutive replicates. Parallel factor analysis (PARAFAC) and partial least square (PLS) modeling were applied for the multivariate calibration of the spectrofluorimetric data. To pre-process the data matrices and predict the model results, the orthogonal signal correction (OSC) was used, and the analysis results were statistically compared. The methods accuracy values for ofloxacin determination, evaluated by the root mean square errors of prediction (RMSEP) and relative standard error of prediction (RSEP), were 0.82 and 1.12 using OSC-PLS, and 0.31 and 0.42 using OSC-PARAFAC models, respectively. Ofloxacin can be reliably determined in human urine samples through the proposed procedure, according to the results.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532017001202291
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532017001202291
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.21577/0103-5053.20170080
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Química
publisher.none.fl_str_mv Sociedade Brasileira de Química
dc.source.none.fl_str_mv Journal of the Brazilian Chemical Society v.28 n.12 2017
reponame:Journal of the Brazilian Chemical Society (Online)
instname:Sociedade Brasileira de Química (SBQ)
instacron:SBQ
instname_str Sociedade Brasileira de Química (SBQ)
instacron_str SBQ
institution SBQ
reponame_str Journal of the Brazilian Chemical Society (Online)
collection Journal of the Brazilian Chemical Society (Online)
repository.name.fl_str_mv Journal of the Brazilian Chemical Society (Online) - Sociedade Brasileira de Química (SBQ)
repository.mail.fl_str_mv ||office@jbcs.sbq.org.br
_version_ 1750318180045160448